-
Notifications
You must be signed in to change notification settings - Fork 21
/
Copy path08_xgb_lr.py
149 lines (129 loc) · 5.63 KB
/
08_xgb_lr.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
import xgboost as xgb
from sklearn.datasets import load_svmlight_file
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import confusion_matrix
from sklearn.externals import joblib
import numpy as np
from scipy.sparse import hstack
from util import load_data
import pickle
def xgb_feature_encode(train_data_file, test_data_file, xgb_feature_file):
all_data = load_data(train_data_file, test_data_file)
# 训练/测试数据分割
X_train, X_test, y_train, y_test = train_test_split(all_data['X_train'], all_data['y_train'], test_size=0.1,
random_state=1)
# 定义模型
xgboost = xgb.XGBClassifier(learning_rate=0.05,
n_estimators=50,
max_depth=3,
gamma=0,
subsample=0.7,
colsample_bytree=0.7)
# 训练学习
xgboost.fit(X_train, y_train,
eval_set=[(X_test, y_test)],
eval_metric="mlogloss",
early_stopping_rounds=10,
verbose=True)
# 预测及AUC评测
y_pred_test = xgboost.predict(X_test)
num = 0
for i in range(0, len(y_pred_test)):
if y_test[i] == y_pred_test[i]:
num += 1
print("prediction accuracy is " + str((num) / len(y_pred_test)))
# xgboost编码原有特征
X_train_leaves = xgboost.apply(X_train)
X_test_leaves = xgboost.apply(X_test)
# 训练样本个数
train_rows = X_train_leaves.shape[0]
# 合并编码后的训练数据和测试数据
X_leaves = np.concatenate((X_train_leaves, X_test_leaves), axis=0)
X_leaves = X_leaves.astype(np.int32)
(rows, cols) = X_leaves.shape
# 记录每棵树的编码区间
cum_count = np.zeros((1, cols), dtype=np.int32)
for j in range(cols):
if j == 0:
cum_count[0][j] = len(np.unique(X_leaves[:, j]))
else:
cum_count[0][j] = len(np.unique(X_leaves[:, j])) + cum_count[0][j - 1]
print('Transform features genenrated by xgboost...')
# 对所有特征进行ont-hot编码
for j in range(cols):
keyMapDict = {}
if j == 0:
initial_index = 1
else:
initial_index = cum_count[0][j - 1] + 1
for i in range(rows):
if X_leaves[i, j] not in keyMapDict:
keyMapDict[X_leaves[i, j]] = initial_index
X_leaves[i, j] = initial_index
initial_index = initial_index + 1
else:
X_leaves[i, j] = keyMapDict[X_leaves[i, j]]
# 基于编码后的特征,将特征处理为libsvm格式且写入文件
print('Write xgboost learned features to file ...')
with open(xgb_feature_file, 'wb') as out_data:
xgb_feature = [X_leaves, all_data['y_train']]
pickle.dump(xgb_feature, out_data)
def xgboost_lr_train(train_data_file, test_data_file, xgb_feature_file):
# load 原始样本数据
all_data = load_data(train_data_file, test_data_file)
X_train_origin, X_test_origin, y_train_origin, y_test_origin = train_test_split(all_data['X_train'],
all_data['y_train'],
test_size=0.3,
random_state=42)
# load xgboost特征编码后的样本数据
with open(xgb_feature_file, 'rb') as in_data:
X_xg_all, y_xg_all = pickle.load(in_data)
X_train, X_test, y_train, y_test = train_test_split(X_xg_all, y_xg_all, test_size=0.3, random_state=42)
# lr对原始特征样本模型训练
lr = LogisticRegression(n_jobs=-1, C=0.1, penalty='l1')
lr.fit(X_train_origin, y_train_origin)
joblib.dump(lr, 'model/lr_orgin.m')
# 预测及AUC评测
y_pred_test = lr.predict(X_test_origin)
num = 0
for i in range(0, len(y_pred_test)):
if y_test_origin[i] == y_pred_test[i]:
num += 1
print("prediction accuracy is " + str((num) / len(y_pred_test)))
# lr对load xgboost特征编码后的样本模型训练
lr = LogisticRegression(n_jobs=-1, C=0.1, penalty='l1')
lr.fit(X_train, y_train)
joblib.dump(lr, 'model/lr_xgb.m')
# 预测及AUC评测
y_pred_test = lr.predict(X_test)
num = 0
for i in range(0, len(y_pred_test)):
if y_test_origin[i] == y_pred_test[i]:
num += 1
print("prediction accuracy is " + str((num) / len(y_pred_test)))
# 基于原始特征组合xgboost编码后的特征
X_train_ext = hstack([X_train_origin, X_train])
del (X_train)
del (X_train_origin)
X_test_ext = hstack([X_test_origin, X_test])
del (X_test)
del (X_test_origin)
# lr对组合后的新特征的样本进行模型训练
lr = LogisticRegression(n_jobs=-1, C=0.1, penalty='l1')
lr.fit(X_train_ext, y_train)
joblib.dump(lr, 'model/lr_ext.m')
# 预测及AUC评测
y_pred_test = lr.predict(X_test_ext)
num = 0
for i in range(0, len(y_pred_test)):
if y_test_origin[i] == y_pred_test[i]:
num += 1
print("prediction accuracy is " + str((num) / len(y_pred_test)))
if __name__ == '__main__':
# 加载数据集
train_data_file = 'data/new_data/train_set.csv'
test_data_file = 'data/new_data/train_set.csv'
xgb_feature_file = 'model/xgb_feature_libsvm'
xgb_feature_encode(train_data_file, test_data_file, xgb_feature_file)
xgboost_lr_train(train_data_file, test_data_file, xgb_feature_file)