forked from aws/amazon-sagemaker-examples
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmnist.py
151 lines (109 loc) · 5.2 KB
/
mnist.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
import argparse
import json
import os
import numpy as np
import tensorflow as tf
from tensorflow.python.estimator.model_fn import ModeKeys as Modes
INPUT_TENSOR_NAME = "inputs"
SIGNATURE_NAME = "predictions"
LEARNING_RATE = 0.001
def model_fn(features, labels, mode, params):
# Input Layer
input_layer = tf.reshape(features[INPUT_TENSOR_NAME], [-1, 28, 28, 1])
# Convolutional Layer #1
conv1 = tf.layers.conv2d(
inputs=input_layer, filters=32, kernel_size=[5, 5], padding="same", activation=tf.nn.relu
)
# Pooling Layer #1
pool1 = tf.layers.max_pooling2d(inputs=conv1, pool_size=[2, 2], strides=2)
# Convolutional Layer #2 and Pooling Layer #2
conv2 = tf.layers.conv2d(
inputs=pool1, filters=64, kernel_size=[5, 5], padding="same", activation=tf.nn.relu
)
pool2 = tf.layers.max_pooling2d(inputs=conv2, pool_size=[2, 2], strides=2)
# Dense Layer
pool2_flat = tf.reshape(pool2, [-1, 7 * 7 * 64])
dense = tf.layers.dense(inputs=pool2_flat, units=1024, activation=tf.nn.relu)
dropout = tf.layers.dropout(inputs=dense, rate=0.4, training=(mode == Modes.TRAIN))
# Logits Layer
logits = tf.layers.dense(inputs=dropout, units=10)
# Define operations
if mode in (Modes.PREDICT, Modes.EVAL):
probabilities = tf.nn.softmax(logits, name="softmax_tensor")
if mode in (Modes.TRAIN, Modes.EVAL):
global_step = tf.train.get_or_create_global_step()
label_indices = tf.cast(labels, tf.int32)
loss = tf.losses.softmax_cross_entropy(
onehot_labels=tf.one_hot(label_indices, depth=10), logits=logits
)
tf.summary.scalar("OptimizeLoss", loss)
if mode == Modes.PREDICT:
predictions = {"probabilities": probabilities}
export_outputs = {SIGNATURE_NAME: tf.estimator.export.PredictOutput(predictions)}
return tf.estimator.EstimatorSpec(
mode, predictions=predictions, export_outputs=export_outputs
)
if mode == Modes.TRAIN:
optimizer = tf.train.AdamOptimizer(learning_rate=0.001)
train_op = optimizer.minimize(loss, global_step=global_step)
print("Returning from Modes.Train")
return tf.estimator.EstimatorSpec(mode, loss=loss, train_op=train_op)
if mode == Modes.EVAL:
eval_metric_ops = {
"accuracy": tf.metrics.accuracy(label_indices, tf.argmax(input=logits, axis=1))
}
return tf.estimator.EstimatorSpec(mode, loss=loss, eval_metric_ops=eval_metric_ops)
def serving_input_fn():
inputs = {INPUT_TENSOR_NAME: tf.placeholder(tf.float32, [None, 784])}
return tf.estimator.export.ServingInputReceiver(inputs, inputs)
def read_and_decode(filename_queue):
reader = tf.TFRecordReader()
_, serialized_example = reader.read(filename_queue)
features = tf.parse_single_example(
serialized_example,
features={
"image_raw": tf.FixedLenFeature([], tf.string),
"label": tf.FixedLenFeature([], tf.int64),
},
)
image = tf.decode_raw(features["image_raw"], tf.uint8)
image.set_shape([784])
image = tf.cast(image, tf.float32) * (1.0 / 255)
label = tf.cast(features["label"], tf.int32)
return image, label
def _train_input_fn(training_dir):
return _input_fn(training_dir, "train.tfrecords", batch_size=100)
def _eval_input_fn(training_dir):
return _input_fn(training_dir, "test.tfrecords", batch_size=100)
def _input_fn(training_dir, training_filename, batch_size=100):
test_file = os.path.join(training_dir, training_filename)
filename_queue = tf.train.string_input_producer([test_file])
image, label = read_and_decode(filename_queue)
images, labels = tf.train.batch(
[image, label], batch_size=batch_size, capacity=1000 + 3 * batch_size
)
return {INPUT_TENSOR_NAME: images}, labels
if __name__ == "__main__":
parser = argparse.ArgumentParser()
# hyperparameters sent by the client are passed as command-line arguments to the script.
parser.add_argument("--epochs", type=int, default=10)
parser.add_argument("--batch_size", type=int, default=100)
parser.add_argument("--learning_rate", type=float, default=0.1)
# input data and model directories
parser.add_argument("--model_dir", type=str)
parser.add_argument("--sm-model-dir", type=str, default=os.environ.get("SM_MODEL_DIR"))
parser.add_argument("--train", type=str, default=os.environ.get("SM_CHANNEL_TRAINING"))
parser.add_argument("--hosts", type=list, default=json.loads(os.environ.get("SM_HOSTS")))
parser.add_argument("--current-host", type=str, default=os.environ.get("SM_CURRENT_HOST"))
args, _ = parser.parse_known_args()
# Create the Estimator
mnist_classifier = tf.estimator.Estimator(model_fn=model_fn, model_dir=args.model_dir)
def train_input_fn():
return _train_input_fn(args.train)
def eval_input_fn():
return _eval_input_fn(args.train)
train_spec = tf.estimator.TrainSpec(train_input_fn, max_steps=1000)
eval_spec = tf.estimator.EvalSpec(eval_input_fn)
tf.estimator.train_and_evaluate(mnist_classifier, train_spec, eval_spec)
if args.current_host == args.hosts[0]:
mnist_classifier.export_savedmodel(args.sm_model_dir, serving_input_fn)