forked from jizongFox/Contrast-You
-
Notifications
You must be signed in to change notification settings - Fork 0
/
plot_pretrain_cluster.py
111 lines (91 loc) · 4.27 KB
/
plot_pretrain_cluster.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
import os
import signal
import typing as t
from pathlib import Path
from easydict import EasyDict as edict
from loguru import logger
from contrastyou import CONFIG_PATH, git_hash, OPT_PATH, on_cc
from contrastyou.arch import UNet
from contrastyou.configure import yaml_load, ConfigManager
from contrastyou.losses.kl import KL_div
from contrastyou.trainer import create_save_dir
from contrastyou.utils import fix_all_seed_within_context, extract_model_state_dict
from hook_creator import create_hook_from_config
from semi_seg.data.creator import get_data
from semi_seg.hooks import feature_until_from_hooks
from semi_seg.trainers.pretrain import PretrainDecoderTrainer
from semi_seg.trainers.trainer import SemiTrainer
from utils import logging_configs, find_checkpoint # noqa
@logger.catch(reraise=True)
def main():
manager = ConfigManager(os.path.join(CONFIG_PATH, "base.yaml"), strict=True, verbose=False)
with manager(scope="base") as config:
# this handles input save dir with relative and absolute paths
absolute_save_dir = create_save_dir(SemiTrainer, config["Trainer"]["save_dir"])
if os.path.exists(absolute_save_dir):
logger.warning(f"{absolute_save_dir} exists, may overwrite the folder")
config.update({"GITHASH": git_hash})
seed = config.get("RandomSeed", 10)
logger.info(f"using seed = {seed}, saved at \"{absolute_save_dir}\"")
with fix_all_seed_within_context(seed):
worker(config, absolute_save_dir, seed)
def worker(config, absolute_save_dir, seed):
# load data setting
data_name = config.Data.name
data_opt = yaml_load(Path(OPT_PATH) / (data_name + ".yaml"))
data_opt = edict(data_opt)
config.OPT = data_opt
model_checkpoint = config["Arch"].pop("checkpoint", None)
with fix_all_seed_within_context(seed):
model = UNet(input_dim=data_opt.input_dim, num_classes=data_opt.num_classes, **config["Arch"])
if model_checkpoint:
logger.info(f"loading model checkpoint from {model_checkpoint}")
try:
model.load_state_dict(extract_model_state_dict(model_checkpoint), strict=True)
logger.info(f"successfully loaded model checkpoint from {model_checkpoint}")
except RuntimeError as e:
# shape mismatch for network.
logger.warning(e)
total_freedom = False
is_pretrain = False
order_num = config["Data"]["order_num"]
labeled_loader, unlabeled_loader, val_loader, test_loader = get_data(
data_params=config["Data"], labeled_loader_params=config["LabeledLoader"],
unlabeled_loader_params=config["UnlabeledLoader"], pretrain=is_pretrain, total_freedom=total_freedom,
order_num=order_num
)
Trainer: 'Trainer' = PretrainDecoderTrainer
trainer = Trainer(
model=model, labeled_loader=labeled_loader, unlabeled_loader=unlabeled_loader,
val_loader=val_loader, test_loader=test_loader, criterion=KL_div(), config=config, save_dir=absolute_save_dir,
**{k: v for k, v in config["Trainer"].items() if k != "save_dir" and k != "name"}
)
# find the last.pth from the save folder.
if on_cc():
checkpoint: t.Optional[str] = find_checkpoint(trainer.absolute_save_dir)
else:
checkpoint: t.Optional[str] = config.trainer_checkpoint
with fix_all_seed_within_context(seed):
hooks = create_hook_from_config(model, config, is_pretrain=False, trainer=trainer)
assert len(hooks) > 0
hook_registration = trainer.register_hook
with hook_registration(*hooks):
until = feature_until_from_hooks(*hooks)
trainer.forward_until = until
with model.switch_grad(False, start=until, include_start=False):
trainer.init()
if checkpoint:
trainer.resume_from_path(checkpoint)
trainer.start_training()
os.environ["contrast_save_flag"] = "true"
os.environ["contrast_save_np_flag"] = "true"
def handler(*args, **kwargs):
raise RuntimeError("end of time")
signal.signal(signal.SIGALRM, handler)
signal.alarm(3 * 60)
return trainer.inference()
if __name__ == '__main__':
import torch
torch.use_deterministic_algorithms(True)
# torch.backends.cudnn.benchmark = True # noqa
main()