From be494174b35f9decec9b5fe63005f224e1747a12 Mon Sep 17 00:00:00 2001 From: yangxue0827 Date: Thu, 13 Jun 2024 19:33:51 +0800 Subject: [PATCH] support dcfl --- README.md | 38 +- configs/dcfl/dcfl_r50_fpn_1x_rsg_le135.py | 117 +++ .../h2rbox_v2p_r50_fpn_1x_rsg_le90.py | 5 - .../h2rbox_v2p_r50_fpn_1x_rsg_rbox_le90.py | 96 ++ mmrotate/core/bbox/assigners/__init__.py | 3 + .../bbox/assigners/coarse2fine_assigner.py | 316 +++++++ .../core/bbox/assigners/ranking_assigner.py | 263 +++++ .../core/bbox/iou_calculators/__init__.py | 4 +- .../rotate_metric_calculator.py | 212 +++++ mmrotate/models/dense_heads/__init__.py | 4 +- mmrotate/models/dense_heads/dcfl_head.py | 895 ++++++++++++++++++ 11 files changed, 1945 insertions(+), 8 deletions(-) create mode 100644 configs/dcfl/dcfl_r50_fpn_1x_rsg_le135.py create mode 100644 configs/h2rbox_v2p/h2rbox_v2p_r50_fpn_1x_rsg_rbox_le90.py create mode 100644 mmrotate/core/bbox/assigners/coarse2fine_assigner.py create mode 100644 mmrotate/core/bbox/assigners/ranking_assigner.py create mode 100644 mmrotate/core/bbox/iou_calculators/rotate_metric_calculator.py create mode 100644 mmrotate/models/dense_heads/dcfl_head.py diff --git a/README.md b/README.md index 9eedec8..ae0f9e3 100644 --- a/README.md +++ b/README.md @@ -18,7 +18,42 @@ Scene graph generation (SGG) in satellite imagery (SAI) benefits promoting intel ## 🛠️ Usage -For instructions on installation, pretrained models, training and evaluation, please refer to [MMRotate 0.3.4](README_en.md). +More instructions on installation, pretrained models, training and evaluation, please refer to [MMRotate 0.3.4](README_en.md). + +- Clone this repo: + + ```bash + git clone https://github.com/yangxue0827/RSG-MMRotate + cd RSG-MMRotate/ + ``` + +- Create a conda virtual environment and activate it: + + ```bash + conda create -n rsg-mmrotate python=3.8 -y + conda activate rsg-mmrotate + ``` + +- Install Pytorch: + + ```bash + pip install torch==1.13.1+cu117 torchvision==0.14.1+cu117 torchaudio==0.13.1 --extra-index-url https://download.pytorch.org/whl/cu117 + ``` + +- Install requirements: + + ```bash + pip install openmim + mim install mmcv-full + mim install mmdet + + cd mmrotate + pip install -r requirements/build.txt + pip install -v -e . + + pip install timm + pip install ipdb + ``` ## 🚀 Released Models @@ -33,6 +68,7 @@ For instructions on installation, pretrained models, training and evaluation, pl | KLD | 25.0 | [rotated_retinanet_hbb_kld_r50_fpn_1x_rsg_oc](configs/kld/rotated_retinanet_hbb_kld_r50_fpn_1x_rsg_oc.py) | [log](https://huggingface.co/yangxue/RSG-MMRotate/raw/main/rotated_retinanet_hbb_kld_r50_fpn_1x_rsg_oc.log) \| [ckpt](https://huggingface.co/yangxue/RSG-MMRotate/resolve/main/rotated_retinanet_hbb_kld_r50_fpn_1x_rsg_oc-343a0b83.pth?download=true) | | GWD | 25.3 | [rotated_retinanet_hbb_gwd_r50_fpn_1x_rsg_oc](configs/gwd/rotated_retinanet_hbb_gwd_r50_fpn_1x_rsg_oc.py) | [log](https://huggingface.co/yangxue/RSG-MMRotate/raw/main/rotated_retinanet_hbb_gwd_r50_fpn_1x_rsg_oc.log) \| [ckpt](https://huggingface.co/yangxue/RSG-MMRotate/resolve/main/rotated_retinanet_hbb_gwd_r50_fpn_1x_rsg_oc-566d2398.pth?download=true) | | KFIoU | 25.5 | [rotated_retinanet_hbb_kfiou_r50_fpn_1x_rsg_oc](configs/kfiou/rotated_retinanet_hbb_kfiou_r50_fpn_1x_rsg_oc.py) | [log](https://huggingface.co/yangxue/RSG-MMRotate/raw/main/rotated_retinanet_hbb_kfiou_r50_fpn_1x_rsg_oc.log) \| [ckpt](https://huggingface.co/yangxue/RSG-MMRotate/resolve/main/rotated_retinanet_hbb_kfiou_r50_fpn_1x_rsg_oc-198081a6.pth?download=true) | +| R3Det | 23.7 | [r3det_r50_fpn_1x_rsg_oc](configs/r3det/r3det_r50_fpn_1x_rsg_oc.py) | [log](https://huggingface.co/yangxue/RSG-MMRotate/raw/main/r3det_r50_fpn_1x_rsg_oc.log) \| [ckpt](https://huggingface.co/yangxue/RSG-MMRotate/resolve/main/r3det_r50_fpn_1x_rsg_oc-c8c4a5e5.pth?download=true) | | S2A-Net | 27.3 | [s2anet_r50_fpn_1x_rsg_le135](configs/s2anet/s2anet_r50_fpn_1x_rsg_le135.py) | [log](https://huggingface.co/yangxue/RSG-MMRotate/raw/main/s2anet_r50_fpn_1x_rsg_le135.log) \| [ckpt](https://huggingface.co/yangxue/RSG-MMRotate/resolve/main/s2anet_r50_fpn_1x_rsg_le135-42887a81.pth?download=true) | | FCOS | 28.1 | [rotated_fcos_r50_fpn_1x_rsg_le90](configs/rotated_fcos/rotated_fcos_r50_fpn_1x_rsg_le90.py) | [log](https://huggingface.co/yangxue/RSG-MMRotate/raw/main/rotated_fcos_r50_fpn_1x_rsg_le90.log) \| [ckpt](https://huggingface.co/yangxue/RSG-MMRotate/resolve/main/rotated_fcos_r50_fpn_1x_rsg_le90-a579fbf7.pth?download=true) | | CSL | 27.4 | [rotated_fcos_csl_gaussian_r50_fpn_1x_rsg_le90](configs/rotated_fcos/rotated_fcos_csl_gaussian_r50_fpn_1x_rsg_le90.py) | [log](https://huggingface.co/yangxue/RSG-MMRotate/raw/main/rotated_fcos_csl_gaussian_r50_fpn_1x_rsg_le90.log) \| [ckpt](https://huggingface.co/yangxue/RSG-MMRotate/resolve/main/rotated_fcos_csl_gaussian_r50_fpn_1x_rsg_le90-6ab9a42a.pth?download=true) | diff --git a/configs/dcfl/dcfl_r50_fpn_1x_rsg_le135.py b/configs/dcfl/dcfl_r50_fpn_1x_rsg_le135.py new file mode 100644 index 0000000..69744bc --- /dev/null +++ b/configs/dcfl/dcfl_r50_fpn_1x_rsg_le135.py @@ -0,0 +1,117 @@ +_base_ = [ + '../_base_/datasets/rsg.py', '../_base_/schedules/schedule_1x.py', + '../_base_/default_runtime.py' +] + +angle_version = 'le135' +model = dict( + type='RotatedRetinaNetCrop', + backbone=dict( + type='ResNet', + depth=50, + num_stages=4, + out_indices=(0, 1, 2, 3), + frozen_stages=1, + zero_init_residual=False, + norm_cfg=dict(type='BN', requires_grad=True), + norm_eval=True, + style='pytorch', + init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet50')), + neck=dict( + type='FPN', + in_channels=[256, 512, 1024, 2048], + out_channels=256, + start_level=1, + add_extra_convs='on_input', + num_outs=5), + bbox_head=dict( + type='RDCFLHead', + num_classes=48, + in_channels=256, + stacked_convs=4, + feat_channels=256, + assign_by_circumhbbox=None, + dcn_assign = True, + dilation_rate = 4, + anchor_generator=dict( + type='RotatedAnchorGenerator', + octave_base_scale=4, + scales_per_octave=1, + ratios=[1.0], + strides=[8, 16, 32, 64, 128]), + bbox_coder=dict( + type='DeltaXYWHAOBBoxCoder', + angle_range=angle_version, + norm_factor=1, + edge_swap=False, + proj_xy=True, + target_means=(.0, .0, .0, .0, .0), + target_stds=(1.0, 1.0, 1.0, 1.0, 1.0)), + loss_cls=dict( + type='FocalLoss', + use_sigmoid=True, + gamma=2.0, + alpha=0.25, + loss_weight=1.0), + reg_decoded_bbox=True, + loss_bbox=dict( + type='RotatedIoULoss', + loss_weight=1.0)), + train_cfg=dict( + assigner=dict( + type='C2FAssigner', + ignore_iof_thr=-1, + gpu_assign_thr= 1024, + iou_calculator=dict(type='RBboxMetrics2D'), + assign_metric='gjsd', + topk=16, + topq=12, + constraint='dgmm', + gauss_thr=0.6), + allowed_border=-1, + pos_weight=-1, + debug=False), + test_cfg=dict( + nms_pre=2000, + min_bbox_size=0, + score_thr=0.05, + nms=dict(iou_thr=0.4), + max_per_img=2000)) + +img_norm_cfg = dict( + mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True) +train_pipeline = [ + dict(type='LoadImageFromFile'), + dict(type='LoadAnnotations', with_bbox=True), + dict(type='RResize', img_scale=(1024, 1024)), + dict( + type='RRandomFlip', + flip_ratio=[0.25, 0.25, 0.25], + direction=['horizontal', 'vertical', 'diagonal'], + version=angle_version), + dict(type='Normalize', **img_norm_cfg), + dict(type='Pad', size_divisor=32), + dict(type='DefaultFormatBundle'), + dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels']) +] +data = dict( + samples_per_gpu=2, + workers_per_gpu=2, + train=dict(pipeline=train_pipeline, version=angle_version), + val=dict(version=angle_version), + test=dict(version=angle_version)) + +optimizer = dict( + _delete_=True, + type='AdamW', + lr=0.0001, + betas=(0.9, 0.999), + weight_decay=0.05, + paramwise_cfg=dict( + custom_keys=dict( + absolute_pos_embed=dict(decay_mult=0.0), + relative_position_bias_table=dict(decay_mult=0.0), + norm=dict(decay_mult=0.0)))) + +checkpoint_config = dict(interval=1, max_keep_ckpts=1) +evaluation = dict(interval=6, metric='mAP') \ No newline at end of file diff --git a/configs/h2rbox_v2p/h2rbox_v2p_r50_fpn_1x_rsg_le90.py b/configs/h2rbox_v2p/h2rbox_v2p_r50_fpn_1x_rsg_le90.py index a37320f..bbbd186 100644 --- a/configs/h2rbox_v2p/h2rbox_v2p_r50_fpn_1x_rsg_le90.py +++ b/configs/h2rbox_v2p/h2rbox_v2p_r50_fpn_1x_rsg_le90.py @@ -108,11 +108,6 @@ img_prefix=data_root + 'test/images/', version=angle_version)) -data = dict( - train=dict(pipeline=train_pipeline, version=angle_version), - val=dict(version=angle_version), - test=dict(version=angle_version)) - optimizer = dict( _delete_=True, type='AdamW', diff --git a/configs/h2rbox_v2p/h2rbox_v2p_r50_fpn_1x_rsg_rbox_le90.py b/configs/h2rbox_v2p/h2rbox_v2p_r50_fpn_1x_rsg_rbox_le90.py new file mode 100644 index 0000000..590373c --- /dev/null +++ b/configs/h2rbox_v2p/h2rbox_v2p_r50_fpn_1x_rsg_rbox_le90.py @@ -0,0 +1,96 @@ +_base_ = [ + '../_base_/datasets/rsg.py', '../_base_/schedules/schedule_1x.py', + '../_base_/default_runtime.py' +] +angle_version = 'le90' + +# model settings +model = dict( + type='H2RBoxV2PDetectorCrop', + backbone=dict( + type='ResNet', + depth=50, + num_stages=4, + out_indices=(0, 1, 2, 3), + frozen_stages=1, + zero_init_residual=False, + norm_cfg=dict(type='BN', requires_grad=True), + norm_eval=True, + style='pytorch', + init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet50')), + neck=dict( + type='FPN', + in_channels=[256, 512, 1024, 2048], + out_channels=256, + start_level=1, + add_extra_convs='on_output', # use P5 + num_outs=5, + relu_before_extra_convs=True), + bbox_head=dict( + type='H2RBoxV2PHead', + num_classes=48, + in_channels=256, + stacked_convs=4, + feat_channels=256, + strides=[8, 16, 32, 64, 128], + center_sampling=True, + center_sample_radius=1.5, + norm_on_bbox=True, + centerness_on_reg=True, + square_cls=[4, 44], + # resize_cls=[1], + scale_angle=False, + bbox_coder=dict( + type='DistanceAnglePointCoder', angle_version=angle_version), + loss_cls=dict( + type='FocalLoss', + use_sigmoid=True, + gamma=2.0, + alpha=0.25, + loss_weight=1.0), + loss_bbox=dict(type='IoULoss', loss_weight=1.0), + loss_centerness=dict( + type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0), + loss_ss_symmetry=dict( + type='SmoothL1Loss', loss_weight=0.2, beta=0.1)), + # training and testing settings + train_cfg=None, + test_cfg=dict( + nms_pre=2000, + min_bbox_size=0, + score_thr=0.05, + nms=dict(iou_thr=0.1), + max_per_img=2000)) + +img_norm_cfg = dict( + mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True) +train_pipeline = [ + dict(type='LoadImageFromFile'), + dict(type='LoadAnnotations', with_bbox=True), + dict(type='RResize', img_scale=(1024, 1024)), + dict( + type='RRandomFlip', + flip_ratio=[0.25, 0.25, 0.25], + direction=['horizontal', 'vertical', 'diagonal'], + version=angle_version), + dict(type='Normalize', **img_norm_cfg), + dict(type='Pad', size_divisor=32), + dict(type='DefaultFormatBundle'), + dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels']) +] + +data = dict( + train=dict(pipeline=train_pipeline, version=angle_version), + val=dict(version=angle_version), + test=dict(version=angle_version)) + +optimizer = dict( + _delete_=True, + type='AdamW', + lr=0.0001, + betas=(0.9, 0.999), + weight_decay=0.05) + +checkpoint_config = dict(interval=1, max_keep_ckpts=1) +evaluation = dict(interval=6, metric='mAP') + diff --git a/mmrotate/core/bbox/assigners/__init__.py b/mmrotate/core/bbox/assigners/__init__.py index ccf64f9..f2991c9 100644 --- a/mmrotate/core/bbox/assigners/__init__.py +++ b/mmrotate/core/bbox/assigners/__init__.py @@ -6,8 +6,11 @@ from .sas_assigner import SASAssigner from .rotated_hungarian_assigner import Rotated_HungarianAssigner from .ars_hungarian_assigner import ARS_HungarianAssigner +from .coarse2fine_assigner import C2FAssigner +from .ranking_assigner import RRankingAssigner __all__ = [ 'ConvexAssigner', 'MaxConvexIoUAssigner', 'SASAssigner', 'ATSSKldAssigner', 'ATSSObbAssigner', 'Rotated_HungarianAssigner', 'ARS_HungarianAssigner', + 'C2FAssigner', 'RRankingAssigner' ] diff --git a/mmrotate/core/bbox/assigners/coarse2fine_assigner.py b/mmrotate/core/bbox/assigners/coarse2fine_assigner.py new file mode 100644 index 0000000..b222e62 --- /dev/null +++ b/mmrotate/core/bbox/assigners/coarse2fine_assigner.py @@ -0,0 +1,316 @@ +import torch +import json +import numpy + +from ..builder import build_bbox_coder +from mmdet.core.bbox.iou_calculators import build_iou_calculator +from mmdet.core.bbox.assigners.assign_result import AssignResult +from mmdet.core.bbox.assigners.base_assigner import BaseAssigner +from ..builder import ROTATED_BBOX_ASSIGNERS +#from mmcv.utils import build_from_cfg + + +@ROTATED_BBOX_ASSIGNERS.register_module() +class C2FAssigner(BaseAssigner): + """Assign a corresponding gt bbox or background to each bbox. + + Each proposals will be assigned with `-1`, or a semi-positive integer + indicating the ground truth index. + + - -1: negative sample, no assigned gt + - semi-positive integer: positive sample, index (0-based) of assigned gt + + Args: + pos_iou_thr (float): IoU threshold for positive bboxes. + neg_iou_thr (float or tuple): IoU threshold for negative bboxes. + min_pos_iou (float): Minimum iou for a bbox to be considered as a + positive bbox. Positive samples can have smaller IoU than + pos_iou_thr due to the 4th step (assign max IoU sample to each gt). + gt_max_assign_all (bool): Whether to assign all bboxes with the same + highest overlap with some gt to that gt. + ignore_iof_thr (float): IoF threshold for ignoring bboxes (if + `gt_bboxes_ignore` is specified). Negative values mean not + ignoring any bboxes. + ignore_wrt_candidates (bool): Whether to compute the iof between + `bboxes` and `gt_bboxes_ignore`, or the contrary. + match_low_quality (bool): Whether to allow low quality matches. This is + usually allowed for RPN and single stage detectors, but not allowed + in the second stage. Details are demonstrated in Step 4. + gpu_assign_thr (int): The upper bound of the number of GT for GPU + assign. When the number of gt is above this threshold, will assign + on CPU device. Negative values mean not assign on CPU. + """ + + def __init__(self, + gt_max_assign_all=True, + ignore_iof_thr=-1, + ignore_wrt_candidates=True, + gpu_assign_thr=512, + iou_calculator=dict(type='BboxOverlaps2D'), + assign_metric='gjsd', + topk=1, + topq=1, + constraint=False, + gauss_thr = 1.0, + bbox_coder=dict( + type='DeltaXYWHAOBBoxCoder', + target_means=(.0, .0, .0, .0, .0), + target_stds=(1.0, 1.0, 1.0, 1.0, 1.0))): + self.gt_max_assign_all = gt_max_assign_all + self.ignore_iof_thr = ignore_iof_thr + self.ignore_wrt_candidates = ignore_wrt_candidates + self.gpu_assign_thr = gpu_assign_thr + self.iou_calculator = build_iou_calculator(iou_calculator) + self.assign_metric = assign_metric + self.topk = topk + self.topq = topq + self.constraint = constraint + self.gauss_thr = gauss_thr + self.bbox_coder = build_bbox_coder(bbox_coder) + + def assign(self, cls_scores, bbox_preds, bboxes, gt_bboxes, gt_bboxes_ignore=None, gt_labels=None): + """Assign gt to bboxes. + """ + assign_on_cpu = True if (self.gpu_assign_thr >= 0) and ( + gt_bboxes.shape[0] > self.gpu_assign_thr) else False + # compute overlap and assign gt on CPU when number of GT is large + if assign_on_cpu: + device = bboxes.device + bboxes = bboxes.cpu() + gt_bboxes = gt_bboxes.cpu() + if gt_bboxes_ignore is not None: + gt_bboxes_ignore = gt_bboxes_ignore.cpu() + if gt_labels is not None: + gt_labels = gt_labels.cpu() + + overlaps = self.iou_calculator(gt_bboxes, bboxes, mode=self.assign_metric) + + if (self.ignore_iof_thr > 0 and gt_bboxes_ignore is not None + and gt_bboxes_ignore.numel() > 0 and bboxes.numel() > 0): + if self.ignore_wrt_candidates: + ignore_overlaps = self.iou_calculator( + bboxes, gt_bboxes_ignore, mode='iof') + ignore_max_overlaps, _ = ignore_overlaps.max(dim=1) + else: + ignore_overlaps = self.iou_calculator( + gt_bboxes_ignore, bboxes, mode='iof') + ignore_max_overlaps, _ = ignore_overlaps.max(dim=0) + overlaps[:, ignore_max_overlaps > self.ignore_iof_thr] = -1 + + num_gts, num_bboxes = overlaps.size(0), overlaps.size(1) + + # 1. assign -1 by default + assigned_gt_inds = overlaps.new_full((num_bboxes,), + -1, + dtype=torch.long) + + if num_gts == 0 or num_bboxes == 0: + # No ground truth or boxes, return empty assignment + max_overlaps = overlaps.new_zeros((num_bboxes,)) + if num_gts == 0: + # No truth, assign everything to background + assigned_gt_inds[:] = 0 + if gt_labels is None: + assigned_labels = None + else: + assigned_labels = overlaps.new_full((num_bboxes,), + -1, + dtype=torch.long) + return AssignResult( + num_gts, + assigned_gt_inds, + max_overlaps, + labels=assigned_labels) + + # for each anchor, which gt best overlaps with it + # for each anchor, the max iou of all gts + max_overlaps, _ = overlaps.max(dim=0) + # for each gt, topk anchors + # for each gt, the topk of all proposals + gt_max_overlaps, _ = overlaps.topk(self.topk, dim=1, largest=True, sorted=True) # gt_argmax_overlaps [num_gt, k] + assigned_gt_inds[(max_overlaps >= 0) & (max_overlaps < 0.8)] = 0 + + for i in range(num_gts): + for j in range(self.topk): + max_overlap_inds = overlaps[i,:] == gt_max_overlaps[i,j] + assigned_gt_inds[max_overlap_inds] = i + 1 + + device = bboxes.device + bbox_preds = bbox_preds.to(device) + cls_scores = cls_scores.to(device) + bbox_preds = torch.transpose(bbox_preds, 0, 1) + bbox_preds = self.bbox_coder.decode(bboxes, bbox_preds) + + num_gt = gt_bboxes.size(0) + num_bboxes = bboxes.size(0) + + can_positive_mask = assigned_gt_inds > 0 + can_positive_inds = torch.nonzero(can_positive_mask) + + poscan = assigned_gt_inds[can_positive_inds].squeeze(-1) + can_other_mask = assigned_gt_inds <= 0 + + can_pos_scores = cls_scores[:,can_positive_inds].squeeze(-1) + + can_pos_scores = torch.transpose(can_pos_scores, 0, 1) + can_bbox_pred = bbox_preds[can_positive_inds,:].squeeze(-1) + + can_pos_iou = self.iou_calculator(gt_bboxes.to(device), can_bbox_pred, mode ='iou') + can_pos_iou = can_pos_iou[poscan-1,range(poscan.size(0))] + can_pos_cls, _ = torch.max(can_pos_scores,1) + + can_pos_quality = can_pos_iou + can_pos_cls.sigmoid() + can_pos_quality = can_pos_quality.unsqueeze(0).repeat(num_gt, 1) # size of gt, pos anchors + + gt_poscan = torch.zeros_like(can_pos_quality) - 100 # size of gt, pos anchors + gt_poscan[poscan-1,range(poscan.size(0))] = can_pos_quality[poscan-1,range(poscan.size(0))] + + if self.topq >= can_pos_quality.size(1): + topq = can_pos_quality.size(1) + else: + topq = self.topq + gt_max_quality, gt_argmax_quality = gt_poscan.topk(topq, dim=1, largest=True, sorted=True) # gt_argmax_quality [num_gt, q] + + assign_result_pre_gt = assigned_gt_inds + + assigned_gt_inds_init = assign_result_pre_gt * can_other_mask + assigned_pos_prior = torch.zeros((num_gt, topq, 5),device=device) + + for i in range(num_gt): + for j in range(topq): + index = gt_argmax_quality[i,j] + remap_inds = can_positive_inds[index,0] + assigned_gt_inds_init[remap_inds] = assign_result_pre_gt [remap_inds] + assigned_pos_prior[i,j,:] = bboxes[remap_inds,:] + assigned_gt_inds = assigned_gt_inds_init + + if self.constraint == 'dgmm': + device1 = gt_bboxes.device + xy_gt, sigma_t = self.xy_wh_r_2_xy_sigma(gt_bboxes) + # get the mean of the positive samples + pos_prior_mean = torch.mean(assigned_pos_prior[...,:2], dim=-2) + _, sigma_t = self.xy_wh_r_2_xy_sigma(gt_bboxes) + xy_pt = pos_prior_mean + xy_a = bboxes[...,:2] + xy_gt = xy_gt[...,None,:,:2].unsqueeze(-1) + xy_pt = xy_pt[...,None,:,:2].unsqueeze(-1) + xy_a = xy_a[...,:,None,:2].unsqueeze(-1) + inv_sigma_t = torch.stack((sigma_t[..., 1, 1], -sigma_t[..., 0, 1], + -sigma_t[..., 1, 0], sigma_t[..., 0, 0]), + dim=-1).reshape(-1, 2, 2) + inv_sigma_t = inv_sigma_t / sigma_t.det().unsqueeze(-1).unsqueeze(-1) + gaussian_gt = torch.exp(-0.5*(xy_a-xy_gt).permute(0, 1, 3, 2).matmul(inv_sigma_t).matmul(xy_a-xy_gt)).squeeze(-1).squeeze(-1) + gaussian_pt = torch.exp(-0.5*(xy_a-xy_pt).permute(0, 1, 3, 2).matmul(inv_sigma_t).matmul(xy_a-xy_pt)).squeeze(-1).squeeze(-1) + gaussian = 0.7*gaussian_gt + 0.3*gaussian_pt + + inside_flag = gaussian >= torch.exp(torch.tensor([-self.gauss_thr])).to(device1) + length = range(assigned_gt_inds.size(0)) + inside_mask = inside_flag[length, (assigned_gt_inds-1).clamp(min=0)] + assigned_gt_inds *= inside_mask + + if gt_labels is not None: + assigned_labels = assigned_gt_inds.new_full((num_bboxes,), -1) + pos_inds = torch.nonzero( + assigned_gt_inds > 0, as_tuple=False).squeeze() + if pos_inds.numel() > 0: + assigned_labels[pos_inds] = gt_labels[ + assigned_gt_inds[pos_inds] - 1] + else: + assigned_labels = None + + assign_result = AssignResult( + num_gts, assigned_gt_inds, max_overlaps, labels=assigned_labels) + + if assign_on_cpu: + assign_result.gt_inds = assign_result.gt_inds.to(device) + assign_result.max_overlaps = assign_result.max_overlaps.to(device) + if assign_result.labels is not None: + assign_result.labels = assign_result.labels.to(device) + + return assign_result + + def assign_wrt_ranking(self, overlaps, gt_labels=None): + num_gts, num_bboxes = overlaps.size(0), overlaps.size(1) + + # 1. assign -1 by default + assigned_gt_inds = overlaps.new_full((num_bboxes,), + -1, + dtype=torch.long) + + if num_gts == 0 or num_bboxes == 0: + # No ground truth or boxes, return empty assignment + max_overlaps = overlaps.new_zeros((num_bboxes,)) + if num_gts == 0: + # No truth, assign everything to background + assigned_gt_inds[:] = 0 + if gt_labels is None: + assigned_labels = None + else: + assigned_labels = overlaps.new_full((num_bboxes,), + -1, + dtype=torch.long) + return AssignResult( + num_gts, + assigned_gt_inds, + max_overlaps, + labels=assigned_labels) + + # for each anchor, which gt best overlaps with it + # for each anchor, the max iou of all gts + max_overlaps, _ = overlaps.max(dim=0) + # for each gt, topk anchors + # for each gt, the topk of all proposals + gt_max_overlaps, _ = overlaps.topk(self.topk, dim=1, largest=True, sorted=True) # gt_argmax_overlaps [num_gt, k] + + + assigned_gt_inds[(max_overlaps >= 0) + & (max_overlaps < 0.8)] = 0 + + for i in range(num_gts): + for j in range(self.topk): + max_overlap_inds = overlaps[i,:] == gt_max_overlaps[i,j] + assigned_gt_inds[max_overlap_inds] = i + 1 + + if gt_labels is not None: + assigned_labels = assigned_gt_inds.new_full((num_bboxes,), -1) + pos_inds = torch.nonzero( + assigned_gt_inds > 0, as_tuple=False).squeeze() + if pos_inds.numel() > 0: + assigned_labels[pos_inds] = gt_labels[ + assigned_gt_inds[pos_inds] - 1] + else: + assigned_labels = None + + return AssignResult( + num_gts, assigned_gt_inds, max_overlaps, labels=assigned_labels) + + def xy_wh_r_2_xy_sigma(self, xywhr): + """Convert oriented bounding box to 2-D Gaussian distribution. + + Args: + xywhr (torch.Tensor): rbboxes with shape (N, 5). + + Returns: + xy (torch.Tensor): center point of 2-D Gaussian distribution + with shape (N, 2). + sigma (torch.Tensor): covariance matrix of 2-D Gaussian distribution + with shape (N, 2, 2). + """ + _shape = xywhr.shape + assert _shape[-1] == 5 + xy = xywhr[..., :2] + wh = xywhr[..., 2:4].clamp(min=1e-7, max=1e7).reshape(-1, 2) + r = xywhr[..., 4] + cos_r = torch.cos(r) + sin_r = torch.sin(r) + R = torch.stack((cos_r, -sin_r, sin_r, cos_r), dim=-1).reshape(-1, 2, 2) + S = 0.5 * torch.diag_embed(wh) + + sigma = R.bmm(S.square()).bmm(R.permute(0, 2, + 1)).reshape(_shape[:-1] + (2, 2)) + + return xy, sigma + + + + \ No newline at end of file diff --git a/mmrotate/core/bbox/assigners/ranking_assigner.py b/mmrotate/core/bbox/assigners/ranking_assigner.py new file mode 100644 index 0000000..aa8940a --- /dev/null +++ b/mmrotate/core/bbox/assigners/ranking_assigner.py @@ -0,0 +1,263 @@ +import torch + +from mmdet.core.bbox.builder import BBOX_ASSIGNERS +from mmdet.core.bbox.iou_calculators import build_iou_calculator +from mmdet.core.bbox.assigners.assign_result import AssignResult +from mmdet.core.bbox.assigners.base_assigner import BaseAssigner +from mmrotate.core.bbox.transforms import hbb2obb + + +@BBOX_ASSIGNERS.register_module() +class RRankingAssigner(BaseAssigner): + """Assign a corresponding gt bbox or background to each bbox. + + Each proposals will be assigned with `-1`, or a semi-positive integer + indicating the ground truth index. + + - -1: negative sample, no assigned gt + - semi-positive integer: positive sample, index (0-based) of assigned gt + + Args: + pos_iou_thr (float): IoU threshold for positive bboxes. + neg_iou_thr (float or tuple): IoU threshold for negative bboxes. + min_pos_iou (float): Minimum iou for a bbox to be considered as a + positive bbox. Positive samples can have smaller IoU than + pos_iou_thr due to the 4th step (assign max IoU sample to each gt). + gt_max_assign_all (bool): Whether to assign all bboxes with the same + highest overlap with some gt to that gt. + ignore_iof_thr (float): IoF threshold for ignoring bboxes (if + `gt_bboxes_ignore` is specified). Negative values mean not + ignoring any bboxes. + ignore_wrt_candidates (bool): Whether to compute the iof between + `bboxes` and `gt_bboxes_ignore`, or the contrary. + match_low_quality (bool): Whether to allow low quality matches. This is + usually allowed for RPN and single stage detectors, but not allowed + in the second stage. Details are demonstrated in Step 4. + gpu_assign_thr (int): The upper bound of the number of GT for GPU + assign. When the number of gt is above this threshold, will assign + on CPU device. Negative values mean not assign on CPU. + """ + + def __init__(self, + gt_max_assign_all=True, + ignore_iof_thr=-1, + ignore_wrt_candidates=True, + gpu_assign_thr=512, + iou_calculator=dict(type='BboxOverlaps2D'), + assign_metric='iou', + topk=1, + inside_circle=False, + gauss_thr = 1.5, + version ='le135'): + self.gt_max_assign_all = gt_max_assign_all + self.ignore_iof_thr = ignore_iof_thr + self.ignore_wrt_candidates = ignore_wrt_candidates + self.gpu_assign_thr = gpu_assign_thr + self.iou_calculator = build_iou_calculator(iou_calculator) + self.assign_metric = assign_metric + self.topk = topk + self.inside_circle = inside_circle + self.gauss_thr = gauss_thr + self.angle_version = version + + def assign(self, bboxes, gt_bboxes, gt_bboxes_ignore=None, gt_labels=None): + """Assign gt to bboxes. + + This method assign a gt bbox to every bbox (proposal/anchor), each bbox + will be assigned with -1, or a semi-positive number. -1 means negative + sample, semi-positive number is the index (0-based) of assigned gt. + The assignment is done in following steps, the order matters. + + 1. assign every bbox to the background + 2. assign proposals whose iou with all gts < neg_iou_thr to 0 + 3. for each bbox, if the iou with its nearest gt >= pos_iou_thr, + assign it to that bbox + 4. for each gt bbox, assign its nearest proposals (may be more than + one) to itself + + Args: + bboxes (Tensor): Bounding boxes to be assigned, shape(n, 4). + gt_bboxes (Tensor): Groundtruth boxes, shape (k, 4). + gt_bboxes_ignore (Tensor, optional): Ground truth bboxes that are + labelled as `ignored`, e.g., crowd boxes in COCO. + gt_labels (Tensor, optional): Label of gt_bboxes, shape (k, ). + + Returns: + :obj:`AssignResult`: The assign result. + + Example: + >>> self = MaxIoUAssigner(0.5, 0.5) + >>> bboxes = torch.Tensor([[0, 0, 10, 10], [10, 10, 20, 20]]) + >>> gt_bboxes = torch.Tensor([[0, 0, 10, 9]]) + >>> assign_result = self.assign(bboxes, gt_bboxes) + >>> expected_gt_inds = torch.LongTensor([1, 0]) + >>> assert torch.all(assign_result.gt_inds == expected_gt_inds) + """ + + assign_on_cpu = True if (self.gpu_assign_thr >= 0) and ( + gt_bboxes.shape[0] > self.gpu_assign_thr) else False + # compute overlap and assign gt on CPU when number of GT is large + if assign_on_cpu: + device = bboxes.device + bboxes = bboxes.cpu() + gt_bboxes = gt_bboxes.cpu() + if gt_bboxes_ignore is not None: + gt_bboxes_ignore = gt_bboxes_ignore.cpu() + if gt_labels is not None: + gt_labels = gt_labels.cpu() + + overlaps = self.iou_calculator(gt_bboxes, bboxes, mode=self.assign_metric, version=self.angle_version) + + if (self.ignore_iof_thr > 0 and gt_bboxes_ignore is not None + and gt_bboxes_ignore.numel() > 0 and bboxes.numel() > 0): + if self.ignore_wrt_candidates: + ignore_overlaps = self.iou_calculator( + bboxes, gt_bboxes_ignore, mode='iof') + ignore_max_overlaps, _ = ignore_overlaps.max(dim=1) + else: + ignore_overlaps = self.iou_calculator( + gt_bboxes_ignore, bboxes, mode='iof') + ignore_max_overlaps, _ = ignore_overlaps.max(dim=0) + overlaps[:, ignore_max_overlaps > self.ignore_iof_thr] = -1 + ''' + if self.anchor_compensate == False: + assign_result = self.assign_wrt_overlaps(overlaps, gt_labels) + else: + assign_result = self.assign_wrt_overlaps_eucliean_distance(bboxes, gt_bboxes, overlaps) + ''' + assign_result =self.assign_wrt_ranking(overlaps, gt_labels) + + if self.inside_circle == 'circle': + center_distance = self.iou_calculator(gt_bboxes, bboxes, mode = 'center_distance2') + width_gt = gt_bboxes[...,2] + height_gt = gt_bboxes[...,3] + # scale [0, 32]^2 r=2, scale [32, 256]^2 r= 1.5, scale [256, +inf]^2 r=1 for scale normalization + ''' + scale = width_gt * height_gt + scale_1 = scale <= 32*32 + scale_2 = (scale> 32*32) & (scale <= 256*256) + scale_3 = scale > 256*256 + r = [2, 1.5, 1] + gt_circle2 = ((width_gt/2)**2 + (height_gt/2) **2) *(scale_1*r[0]**2+scale_2*r[1]**2+scale_3*r[2]**2) + ''' + r=1.5 + gt_circle = ((width_gt/2)**2 + (height_gt/2) **2) * r * r + inside_flag = center_distance <= gt_circle[...,None] + length = range(assign_result.gt_inds.size(0)) + inside_mask = inside_flag[(assign_result.gt_inds-1).clamp(min=0), length] + assign_result.gt_inds *= inside_mask + + elif self.inside_circle == 'gaussian': + + if gt_bboxes.size(-1) == 4: + gt_bboxes = hbb2obb(gt_bboxes, version=self.angle_version) + if bboxes.size(-1) == 4: + bboxes = hbb2obb(bboxes, version=self.angle_version) + + device1 = gt_bboxes.device + xy_t, sigma_t = self.xy_wh_r_2_xy_sigma(gt_bboxes) + xy_a = bboxes[...,:2] + xy_t = xy_t[...,None,:,:2].unsqueeze(-1) + xy_a = xy_a[...,:,None,:2].unsqueeze(-1) + inv_sigma_t = torch.stack((sigma_t[..., 1, 1], -sigma_t[..., 0, 1], + -sigma_t[..., 1, 0], sigma_t[..., 0, 0]), + dim=-1).reshape(-1, 2, 2) + inv_sigma_t = inv_sigma_t / sigma_t.det().unsqueeze(-1).unsqueeze(-1) + gaussian = torch.exp(-0.5*(xy_a-xy_t).permute(0, 1, 3, 2).matmul(inv_sigma_t).matmul(xy_a-xy_t)).squeeze(-1).squeeze(-1) #/(2*3.1415926*sigma_t.det()) + inside_flag = gaussian >= torch.exp(torch.tensor([-self.gauss_thr])).to(device1) + length = range(assign_result.gt_inds.size(0)) + inside_mask = inside_flag[length, (assign_result.gt_inds-1).clamp(min=0)] + assign_result.gt_inds *= inside_mask + + + if assign_on_cpu: + assign_result.gt_inds = assign_result.gt_inds.to(device) + assign_result.max_overlaps = assign_result.max_overlaps.to(device) + if assign_result.labels is not None: + assign_result.labels = assign_result.labels.to(device) + return assign_result + + def assign_wrt_ranking(self, overlaps, gt_labels=None): + num_gts, num_bboxes = overlaps.size(0), overlaps.size(1) + + # 1. assign -1 by default + assigned_gt_inds = overlaps.new_full((num_bboxes,), + -1, + dtype=torch.long) + + if num_gts == 0 or num_bboxes == 0: + # No ground truth or boxes, return empty assignment + max_overlaps = overlaps.new_zeros((num_bboxes,)) + if num_gts == 0: + # No truth, assign everything to background + assigned_gt_inds[:] = 0 + if gt_labels is None: + assigned_labels = None + else: + assigned_labels = overlaps.new_full((num_bboxes,), + -1, + dtype=torch.long) + return AssignResult( + num_gts, + assigned_gt_inds, + max_overlaps, + labels=assigned_labels) + + # for each anchor, which gt best overlaps with it + # for each anchor, the max iou of all gts + max_overlaps, argmax_overlaps = overlaps.max(dim=0) + # for each gt, topk anchors + # for each gt, the topk of all proposals + gt_max_overlaps, gt_argmax_overlaps = overlaps.topk(self.topk, dim=1, largest=True, sorted=True) # gt_argmax_overlaps [num_gt, k] + + + assigned_gt_inds[(max_overlaps >= 0) + & (max_overlaps < 0.8)] = 0 + #assign wrt ranking + for i in range(num_gts): + for j in range(self.topk): + max_overlap_inds = overlaps[i,:] == gt_max_overlaps[i,j] + assigned_gt_inds[max_overlap_inds] = i + 1 + + if gt_labels is not None: + assigned_labels = assigned_gt_inds.new_full((num_bboxes,), -1) + pos_inds = torch.nonzero( + assigned_gt_inds > 0, as_tuple=False).squeeze() + if pos_inds.numel() > 0: + assigned_labels[pos_inds] = gt_labels[ + assigned_gt_inds[pos_inds] - 1] + else: + assigned_labels = None + + return AssignResult( + num_gts, assigned_gt_inds, max_overlaps, labels=assigned_labels) + + def xy_wh_r_2_xy_sigma(self, xywhr): + """Convert oriented bounding box to 2-D Gaussian distribution. + + Args: + xywhr (torch.Tensor): rbboxes with shape (N, 5). + + Returns: + xy (torch.Tensor): center point of 2-D Gaussian distribution + with shape (N, 2). + sigma (torch.Tensor): covariance matrix of 2-D Gaussian distribution + with shape (N, 2, 2). + """ + _shape = xywhr.shape + assert _shape[-1] == 5 + xy = xywhr[..., :2] + wh = xywhr[..., 2:4].clamp(min=1e-7, max=1e7).reshape(-1, 2) + r = xywhr[..., 4] + cos_r = torch.cos(r) + sin_r = torch.sin(r) + R = torch.stack((cos_r, -sin_r, sin_r, cos_r), dim=-1).reshape(-1, 2, 2) + S = 0.5 * torch.diag_embed(wh) + + sigma = R.bmm(S.square()).bmm(R.permute(0, 2, + 1)).reshape(_shape[:-1] + (2, 2)) + + return xy, sigma + + + \ No newline at end of file diff --git a/mmrotate/core/bbox/iou_calculators/__init__.py b/mmrotate/core/bbox/iou_calculators/__init__.py index 5902ab0..a7ff8b3 100644 --- a/mmrotate/core/bbox/iou_calculators/__init__.py +++ b/mmrotate/core/bbox/iou_calculators/__init__.py @@ -1,5 +1,7 @@ # Copyright (c) OpenMMLab. All rights reserved. from .builder import build_iou_calculator from .rotate_iou2d_calculator import RBboxOverlaps2D, rbbox_overlaps +from .rotate_metric_calculator import RBboxMetrics2D -__all__ = ['build_iou_calculator', 'RBboxOverlaps2D', 'rbbox_overlaps'] + +__all__ = ['build_iou_calculator', 'RBboxOverlaps2D', 'rbbox_overlaps', 'RBboxMetrics2D'] diff --git a/mmrotate/core/bbox/iou_calculators/rotate_metric_calculator.py b/mmrotate/core/bbox/iou_calculators/rotate_metric_calculator.py new file mode 100644 index 0000000..7fd8dab --- /dev/null +++ b/mmrotate/core/bbox/iou_calculators/rotate_metric_calculator.py @@ -0,0 +1,212 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import torch +from mmcv.ops import box_iou_rotated + +from .builder import ROTATED_IOU_CALCULATORS +from mmrotate.core.bbox.transforms import hbb2obb + + + +@ROTATED_IOU_CALCULATORS.register_module() +class RBboxMetrics2D(object): + """2D Overlaps (e.g. IoUs, GIoUs) Calculator.""" + + def __call__(self, + bboxes1, + bboxes2, + mode='iou', + is_aligned=False, + version='oc'): + """Calculate IoU between 2D bboxes. + + Args: + bboxes1 (torch.Tensor): bboxes have shape (m, 5) in + format, or shape (m, 6) in + format. + bboxes2 (torch.Tensor): bboxes have shape (m, 5) in + format, shape (m, 6) in + format, or be empty. + If ``is_aligned `` is ``True``, then m and n must be equal. + mode (str): "iou" (intersection over union), "iof" (intersection + over foreground), or "giou" (generalized intersection over + union). + is_aligned (bool, optional): If True, then m and n must be equal. + Default False. + version (str, optional): Angle representations. Defaults to 'oc'. + + Returns: + Tensor: shape (m, n) if ``is_aligned `` is False else shape (m,) + """ + assert bboxes1.size(-1) in [0, 2, 4, 5, 6] + assert bboxes2.size(-1) in [0, 2, 4, 5, 6] + + if bboxes1.size(-1) == 4: + bboxes1 = hbb2obb(bboxes1, version) + if bboxes2.size(-1) == 4: + bboxes2 = hbb2obb(bboxes2, version) + + if bboxes2.size(-1) == 6: + bboxes2 = bboxes2[..., :5] + if bboxes1.size(-1) == 6: + bboxes1 = bboxes1[..., :5] + return rbbox_metrics(bboxes1.contiguous(), bboxes2.contiguous(), mode, + is_aligned) + + def __repr__(self): + """str: a string describing the module""" + repr_str = self.__class__.__name__ + '()' + return repr_str + + +def rbbox_metrics(bboxes1, bboxes2, mode='iou', is_aligned=False): + """Calculate overlap between two set of bboxes. + + Args: + bboxes1 (torch.Tensor): shape (B, m, 5) in format + or empty. + bboxes2 (torch.Tensor): shape (B, n, 5) in format + or empty. + mode (str): "iou" (intersection over union), "iof" (intersection over + foreground) or "giou" (generalized intersection over union). + Default "iou". + is_aligned (bool, optional): If True, then m and n must be equal. + Default False. + + Returns: + Tensor: shape (m, n) if ``is_aligned`` is False else shape (m,) + """ + assert mode in ['iou', 'iof','gjsd','center_distance2'] + # Either the boxes are empty or the length of boxes's last dimension is 5 + if mode in ['center_distance2']: + pass + else: + assert (bboxes1.size(-1) == 5 or bboxes1.size(0) == 0) + assert (bboxes2.size(-1) == 5 or bboxes2.size(0) == 0) + + rows = bboxes1.size(0) + cols = bboxes2.size(0) + if is_aligned: + assert rows == cols + + if rows * cols == 0: + return bboxes1.new(rows, 1) if is_aligned else bboxes1.new(rows, cols) + + if mode in ['iou','iof']: + # resolve `rbbox_overlaps` abnormal when input rbbox is too small. + clamped_bboxes1 = bboxes1.detach().clone() + clamped_bboxes2 = bboxes2.detach().clone() + clamped_bboxes1[:, 2:4].clamp_(min=1e-3) + clamped_bboxes2[:, 2:4].clamp_(min=1e-3) + + return box_iou_rotated(clamped_bboxes1, clamped_bboxes2, mode, is_aligned) + + if mode == 'gjsd': + g_bboxes1 = xy_wh_r_2_xy_sigma(bboxes1) + g_bboxes2 = xy_wh_r_2_xy_sigma(bboxes2) + gjsd = get_gjsd(g_bboxes1,g_bboxes2) + distance = 1/(1+gjsd) + + return distance + + if mode == 'center_distance2': + center1 = bboxes1[..., :, None, :2] + center2 = bboxes2[..., None, :, :2] + whs = center1[..., :2] - center2[..., :2] + + center_distance2 = whs[..., 0] * whs[..., 0] + whs[..., 1] * whs[..., 1] + 1e-6 # + + #distance = torch.sqrt(center_distance2) + + return center_distance2 + + +def xy_wh_r_2_xy_sigma(xywhr): + """Convert oriented bounding box to 2-D Gaussian distribution. + + Args: + xywhr (torch.Tensor): rbboxes with shape (N, 5). + + Returns: + xy (torch.Tensor): center point of 2-D Gaussian distribution + with shape (N, 2). + sigma (torch.Tensor): covariance matrix of 2-D Gaussian distribution + with shape (N, 2, 2). + """ + _shape = xywhr.shape + assert _shape[-1] == 5 + xy = xywhr[..., :2] + wh = xywhr[..., 2:4].clamp(min=1e-7, max=1e7).reshape(-1, 2) + r = xywhr[..., 4] + cos_r = torch.cos(r) + sin_r = torch.sin(r) + R = torch.stack((cos_r, -sin_r, sin_r, cos_r), dim=-1).reshape(-1, 2, 2) + S = 0.5 * torch.diag_embed(wh) + + sigma = R.bmm(S.square()).bmm(R.permute(0, 2, + 1)).reshape(_shape[:-1] + (2, 2)) + + return xy, sigma + + +def get_gjsd(pred, target, alpha=0.5): + xy_p, Sigma_p = pred # mu_1, sigma_1 + xy_t, Sigma_t = target # mu_2, sigma_2 + + Sigma_p = Sigma_p.reshape(-1, 2, 2) + Sigma_t = Sigma_t.reshape(-1, 2, 2) + + + xy_p = xy_p[...,:,None,:2] + xy_t = xy_t[...,None,:,:2] + + # get the inverse of Sigma_p and Sigma_t + Sigma_p_inv = torch.stack((Sigma_p[..., 1, 1], -Sigma_p[..., 0, 1], + -Sigma_p[..., 1, 0], Sigma_p[..., 0, 0]), + dim=-1).reshape(-1, 2, 2) + Sigma_p_inv = Sigma_p_inv / Sigma_p.det().unsqueeze(-1).unsqueeze(-1) + Sigma_t_inv = torch.stack((Sigma_t[..., 1, 1], -Sigma_t[..., 0, 1], + -Sigma_t[..., 1, 0], Sigma_t[..., 0, 0]), + dim=-1).reshape(-1, 2, 2) + Sigma_t_inv = Sigma_t_inv / Sigma_t.det().unsqueeze(-1).unsqueeze(-1) + + Sigma_p = Sigma_p[...,:,None,:2,:2] + Sigma_p_inv = Sigma_p_inv[...,:,None,:2,:2] + Sigma_t = Sigma_t[...,None,:,:2,:2] + Sigma_t_inv = Sigma_t_inv[...,None,:,:2,:2] + + Sigma_alpha_ori = ((1-alpha)*Sigma_p_inv + alpha*Sigma_t_inv) + + # get the inverse of Sigma_alpha_ori, namely Sigma_alpha + Sigma_alpha = torch.stack((Sigma_alpha_ori[..., 1, 1], -Sigma_alpha_ori[..., 0, 1], + -Sigma_alpha_ori[..., 1, 0], Sigma_alpha_ori[..., 0, 0]), + dim=-1).reshape(Sigma_alpha_ori.size(0), Sigma_alpha_ori.size(1), 2, 2) + Sigma_alpha = Sigma_alpha / Sigma_alpha_ori.det().unsqueeze(-1).unsqueeze(-1) + # get the inverse of Sigma_alpha, namely Sigma_alpha_inv + Sigma_alpha_inv = torch.stack((Sigma_alpha[..., 1, 1], -Sigma_alpha[..., 0, 1], + -Sigma_alpha[..., 1, 0], Sigma_alpha[..., 0, 0]), + dim=-1).reshape(Sigma_alpha.size(0),Sigma_alpha.size(1), 2, 2) + Sigma_alpha_inv = Sigma_alpha_inv / Sigma_alpha.det().unsqueeze(-1).unsqueeze(-1) + + # mu_alpha + xy_p = xy_p.unsqueeze(-1) + xy_t = xy_t.unsqueeze(-1) + + mu_alpha_1 = (1-alpha)* Sigma_p_inv.matmul(xy_p) + alpha * Sigma_t_inv.matmul(xy_t) + mu_alpha = Sigma_alpha.matmul(mu_alpha_1) + + # the first part of GJSD + first_part = (1-alpha) * xy_p.permute(0,1,3,2).matmul(Sigma_p_inv).matmul(xy_p) + alpha * xy_t.permute(0,1,3,2).matmul(Sigma_t_inv).matmul(xy_t) - mu_alpha.permute(0,1,3,2).matmul(Sigma_alpha_inv).matmul(mu_alpha) + second_part = ((Sigma_p.det() ** (1-alpha))*(Sigma_t.det() ** alpha))/(Sigma_alpha.det()) + second_part = second_part.log() + + if first_part.is_cuda: + gjsd = 0.5 * (first_part.half().squeeze(-1).squeeze(-1) + second_part.half()) + #distance = 1/(1+gjsd) + else: + gjsd = 0.5 * (first_part.squeeze(-1).squeeze(-1) + second_part) + #distance = 1/(1+gjsd) + + return gjsd + + + diff --git a/mmrotate/models/dense_heads/__init__.py b/mmrotate/models/dense_heads/__init__.py index ad92a47..a0ff23e 100644 --- a/mmrotate/models/dense_heads/__init__.py +++ b/mmrotate/models/dense_heads/__init__.py @@ -24,6 +24,7 @@ from .psc_rotated_fcos_head import PSCRFCOSHead from .kld_reppoints_head import KLDRepPointsHead from .h2rbox_v2p_head import H2RBoxV2PHead +from .dcfl_head import RDCFLHead __all__ = [ 'RotatedAnchorHead', 'RotatedRetinaHead', 'RotatedRPNHead', @@ -33,5 +34,6 @@ 'RotatedATSSHead', 'RotatedAnchorFreeHead', 'RotatedFCOSHead', 'CSLRFCOSHead', 'OrientedRepPointsHead', 'RotatedDETRHead', 'RotatedDeformableDETRHead', 'ARSDeformableDETRHead', 'DNARSDeformableDETRHead', - 'H2RBoxHead', 'PSCRFCOSHead', 'KLDRepPointsHead', 'H2RBoxV2PHead' + 'H2RBoxHead', 'PSCRFCOSHead', 'KLDRepPointsHead', 'H2RBoxV2PHead', + 'RDCFLHead' ] diff --git a/mmrotate/models/dense_heads/dcfl_head.py b/mmrotate/models/dense_heads/dcfl_head.py new file mode 100644 index 0000000..f50a845 --- /dev/null +++ b/mmrotate/models/dense_heads/dcfl_head.py @@ -0,0 +1,895 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import torch.nn as nn +import torch +from mmcv.ops import DeformConv2d, ModulatedDeformConv2d, modulated_deform_conv2d +from mmcv.cnn import ConvModule +from mmcv.runner import force_fp32 +from mmcv.utils import print_log +from mmdet.core import images_to_levels, multi_apply, unmap +from mmrotate.core import obb2hbb, rotated_anchor_inside_flags + +from ..builder import ROTATED_HEADS, build_loss +from .rotated_anchor_head import RotatedAnchorHead + + +class ModulatedDeformConvG(ModulatedDeformConv2d): + """A ModulatedDeformable Conv Encapsulation that acts as normal Conv + layers. + + Args: + in_channels (int): Same as nn.Conv2d. + out_channels (int): Same as nn.Conv2d. + kernel_size (int or tuple[int]): Same as nn.Conv2d. + stride (int): Same as nn.Conv2d, while tuple is not supported. + padding (int): Same as nn.Conv2d, while tuple is not supported. + dilation (int): Same as nn.Conv2d, while tuple is not supported. + groups (int): Same as nn.Conv2d. + bias (bool or str): If specified as `auto`, it will be decided by the + norm_cfg. Bias will be set as True if norm_cfg is None, otherwise + False. + """ + + _version = 2 + + def __init__(self, *args, **kwargs): + super(ModulatedDeformConvG, self).__init__(*args, **kwargs) + self.conv_offset = nn.Conv2d( + self.in_channels, + self.deform_groups * 3 * self.kernel_size[0] * self.kernel_size[1], + kernel_size=self.kernel_size, + stride=self.stride, + padding=self.padding, + dilation=self.dilation, + bias=True) + self.init_weights() + + def init_weights(self): + super(ModulatedDeformConvG, self).init_weights() + if hasattr(self, 'conv_offset'): + self.conv_offset.weight.data.zero_() + self.conv_offset.bias.data.zero_() + + def forward(self, x): + out = self.conv_offset(x) + o1, o2, mask = torch.chunk(out, 3, dim=1) + offset = torch.cat((o1, o2), dim=1) + mask = torch.sigmoid(mask) + out = modulated_deform_conv2d(x, offset, mask, self.weight, self.bias, + self.stride, self.padding, + self.dilation, self.groups, + self.deform_groups) + return out, offset, mask + + def _load_from_state_dict(self, state_dict, prefix, local_metadata, strict, + missing_keys, unexpected_keys, error_msgs): + version = local_metadata.get('version', None) + + if version is None or version < 2: + # the key is different in early versions + # In version < 2, ModulatedDeformConvPack + # loads previous benchmark models. + if (prefix + 'conv_offset.weight' not in state_dict + and prefix[:-1] + '_offset.weight' in state_dict): + state_dict[prefix + 'conv_offset.weight'] = state_dict.pop( + prefix[:-1] + '_offset.weight') + if (prefix + 'conv_offset.bias' not in state_dict + and prefix[:-1] + '_offset.bias' in state_dict): + state_dict[prefix + + 'conv_offset.bias'] = state_dict.pop(prefix[:-1] + + '_offset.bias') + + if version is not None and version > 1: + print_log( + f'ModulatedDeformConvPack {prefix.rstrip(".")} is upgraded to ' + 'version 2.', + logger='root') + + super()._load_from_state_dict(state_dict, prefix, local_metadata, + strict, missing_keys, unexpected_keys, + error_msgs) + + +@ROTATED_HEADS.register_module() +class RDCFLHead(RotatedAnchorHead): + r"""An anchor-based head used in `RotatedRetinaNet + `_. + + The head contains two subnetworks. The first classifies anchor boxes and + the second regresses deltas for the anchors. + + Args: + num_classes (int): Number of categories excluding the background + category. + in_channels (int): Number of channels in the input feature map. + stacked_convs (int, optional): Number of stacked convolutions. + conv_cfg (dict, optional): Config dict for convolution layer. + Default: None. + norm_cfg (dict, optional): Config dict for normalization layer. + Default: None. + anchor_generator (dict): Config dict for anchor generator + init_cfg (dict or list[dict], optional): Initialization config dict. + """ # noqa: W605 + + def __init__(self, + num_classes, + in_channels, + stacked_convs=4, + conv_cfg=None, + norm_cfg=None, + dcn_assign = False, + dilation_rate = 2, + anchor_generator=dict( + type='AnchorGenerator', + octave_base_scale=4, + scales_per_octave=3, + ratios=[0.5, 1.0, 2.0], + strides=[8, 16, 32, 64, 128]), + init_cfg=dict( + type='Normal', + layer='Conv2d', + std=0.01, + override=dict( + type='Normal', + name='retina_cls', + std=0.01, + bias_prob=0.01)), + **kwargs): + self.stacked_convs = stacked_convs + self.conv_cfg = conv_cfg + self.norm_cfg = norm_cfg + self.dcn_assign = dcn_assign + self.dilation_rate = dilation_rate + super(RDCFLHead, self).__init__( + num_classes, + in_channels, + anchor_generator=anchor_generator, + init_cfg=init_cfg, + **kwargs) + + def _init_layers(self): + """Initialize layers of the head.""" + self.relu = nn.ReLU(inplace=True) + self.cls_convs = nn.ModuleList() + self.reg_convs = nn.ModuleList() + if self.dcn_assign == False: + for i in range(self.stacked_convs): + chn = self.in_channels if i == 0 else self.feat_channels + self.cls_convs.append( + ConvModule( + chn, + self.feat_channels, + 3, + stride=1, + padding=1, + conv_cfg=self.conv_cfg, + norm_cfg=self.norm_cfg)) + self.reg_convs.append( + ConvModule( + chn, + self.feat_channels, + 3, + stride=1, + padding=1, + conv_cfg=self.conv_cfg, + norm_cfg=self.norm_cfg)) + else: + for i in range(self.stacked_convs-2): + chn = self.in_channels if i == 0 else self.feat_channels + self.cls_convs.append( + ConvModule( + chn, + self.feat_channels, + 3, + stride=1, + padding=1, + conv_cfg=self.conv_cfg, + norm_cfg=self.norm_cfg)) + self.reg_convs.append( + ConvModule( + chn, + self.feat_channels, + 3, + stride=1, + padding=1, + conv_cfg=self.conv_cfg, + norm_cfg=self.norm_cfg)) + for i in range(1): + self.cls_convs.append( + DeformConv2d( + self.feat_channels, + self.feat_channels, + 3, + stride=1, + padding=1, + groups=1, + bias=False)) + self.reg_convs.append( + DeformConv2d( + self.feat_channels, + self.feat_channels, + 3, + stride=1, + padding=1, + groups=1, + bias=False)) + for i in range(1): + self.cls_convs.append( + ModulatedDeformConv2d( + self.feat_channels, + self.feat_channels, + 3, + stride=1, + padding=1, + groups=1, + bias=False)) + self.reg_convs.append( + ModulatedDeformConvG( + self.feat_channels, + self.feat_channels, + 3, + stride=1, + padding=1, + groups=1, + bias=False)) + self.retina_cls = nn.Conv2d( + self.feat_channels, + self.num_anchors * self.cls_out_channels, + 3, + padding=1) + self.retina_reg = nn.Conv2d( + self.feat_channels, self.num_anchors * 5, 3, padding=1) + + + def forward_single(self, x): + """Forward feature of a single scale level. + + Args: + x (torch.Tensor): Features of a single scale level. + + Returns: + tuple (torch.Tensor): + + - cls_score (torch.Tensor): Cls scores for a single scale \ + level the channels number is num_anchors * num_classes. + - bbox_pred (torch.Tensor): Box energies / deltas for a \ + single scale level, the channels number is num_anchors * 4. + """ + cls_feat = x + reg_feat = x + if self.dcn_assign == False: + for cls_conv in self.cls_convs: + cls_feat = cls_conv(cls_feat) + for reg_conv in self.reg_convs: + reg_feat = reg_conv(reg_feat) + else: + for reg_conv in self.reg_convs[:-2]: + reg_feat = reg_conv(reg_feat) + + init_t = torch.Tensor(reg_feat.size(0), 1, reg_feat.size(-2), reg_feat.size(-1)) + item = torch.ones_like(init_t, device=reg_feat.device) * (self.dilation_rate - 1) + zeros = torch.zeros_like(item, device=reg_feat.device) + sampling_loc = torch.cat((-item,-item,-item,zeros,-item,item,zeros,-item, zeros, zeros, zeros,item,item,-item,item,zeros,item,item), dim=1) + + reg_feat = self.reg_convs[self.stacked_convs - 2](reg_feat, sampling_loc) + reg_feat, offsets_reg, mask_reg = self.reg_convs[self.stacked_convs - 1](reg_feat) + + for cls_conv in self.cls_convs[:-2]: + cls_feat = cls_conv(cls_feat) + cls_feat = self.cls_convs[self.stacked_convs - 2](cls_feat, sampling_loc) + cls_feat = self.cls_convs[self.stacked_convs - 1](cls_feat, offsets_reg, mask_reg) + + # offset batch_size * 18 * feature_size * feature_size (128,64,32,16,8), offset [y0, x0, y1, x1, y2, x2, ..., y8, x8] + cls_score = self.retina_cls(cls_feat) + bbox_pred = self.retina_reg(reg_feat) + return cls_score, bbox_pred, offsets_reg + + + def loss_single(self, cls_score, bbox_pred, anchors, labels, label_weights, bbox_targets, bbox_weights, num_total_samples): + """Compute loss of a single scale level. + + Args: + cls_score (torch.Tensor): Box scores for each scale level + Has shape (N, num_anchors * num_classes, H, W). + bbox_pred (torch.Tensor): Box energies / deltas for each scale + level with shape (N, num_anchors * 5, H, W). + anchors (torch.Tensor): Box reference for each scale level with + shape (N, num_total_anchors, 5). + labels (torch.Tensor): Labels of each anchors with shape + (N, num_total_anchors). + label_weights (torch.Tensor): Label weights of each anchor with + shape (N, num_total_anchors) + bbox_targets (torch.Tensor): BBox regression targets of each anchor + weight shape (N, num_total_anchors, 5). + bbox_weights (torch.Tensor): BBox regression loss weights of each + anchor with shape (N, num_total_anchors, 5). + num_total_samples (int): If sampling, num total samples equal to + the number of total anchors; Otherwise, it is the number of + positive anchors. + + Returns: + tuple (torch.Tensor): + + - loss_cls (torch.Tensor): cls. loss for each scale level. + - loss_bbox (torch.Tensor): reg. loss for each scale level. + """ + # classification loss + labels = labels.reshape(-1) + label_weights = label_weights.reshape(-1) + cls_score = cls_score.permute(0, 2, 3, + 1).reshape(-1, self.cls_out_channels) + + # regression loss + bbox_targets = bbox_targets.reshape(-1, 5) + bbox_weights = bbox_weights.reshape(-1, 5) + bbox_pred = bbox_pred.permute(0, 2, 3, 1).reshape(-1, 5) + + if self.reg_decoded_bbox: + anchors = anchors.reshape(-1, 5) + bbox_pred = self.bbox_coder.decode(anchors, bbox_pred) + + loss_cls = self.loss_cls( + cls_score, labels, label_weights, avg_factor=num_total_samples) + + loss_bbox = self.loss_bbox( + bbox_pred, + bbox_targets, + bbox_weights, + avg_factor=num_total_samples) + + return loss_cls, loss_bbox + + @force_fp32(apply_to=('cls_scores', 'bbox_preds')) + def loss(self, + cls_scores, + bbox_preds, + offsets, + gt_bboxes, + gt_labels, + img_metas, + gt_bboxes_ignore=None): + """Compute losses of the head. + + Args: + cls_scores (list[Tensor]): Box scores for each scale level + Has shape (N, num_anchors * num_classes, H, W) + bbox_preds (list[Tensor]): Box energies / deltas for each scale + level with shape (N, num_anchors * 5, H, W) + gt_bboxes (list[Tensor]): Ground truth bboxes for each image with + shape (num_gts, 5) in [cx, cy, w, h, a] format. + gt_labels (list[Tensor]): class indices corresponding to each box + img_metas (list[dict]): Meta information of each image, e.g., + image size, scaling factor, etc. + gt_bboxes_ignore (None | list[Tensor]): specify which bounding + boxes can be ignored when computing the loss. Default: None + + Returns: + dict[str, Tensor]: A dictionary of loss components. + """ + featmap_sizes = [featmap.size()[-2:] for featmap in cls_scores] + assert len(featmap_sizes) == self.anchor_generator.num_levels + + device = cls_scores[0].device + + anchor_list, valid_flag_list = self.get_anchors( + featmap_sizes, img_metas, device=device) + label_channels = self.cls_out_channels if self.use_sigmoid_cls else 1 + cls_reg_targets = self.get_targets( + cls_scores, + bbox_preds, + anchor_list, + valid_flag_list, + offsets, + gt_bboxes, + img_metas, + gt_bboxes_ignore_list=gt_bboxes_ignore, + gt_labels_list=gt_labels, + label_channels=label_channels) + if cls_reg_targets is None: + return None + (labels_list, label_weights_list, bbox_targets_list, bbox_weights_list, + num_total_pos, num_total_neg) = cls_reg_targets + num_total_samples = ( + num_total_pos + num_total_neg if self.sampling else num_total_pos) + + num_level_anchors = [anchors.size(0) for anchors in anchor_list[0]] + concat_anchor_list = [] + for i, _ in enumerate(anchor_list): + concat_anchor_list.append(torch.cat(anchor_list[i])) + all_anchor_list = images_to_levels(concat_anchor_list, + num_level_anchors) + losses_cls, losses_bbox = multi_apply( + self.loss_single, + cls_scores, + bbox_preds, + all_anchor_list, + labels_list, + label_weights_list, + bbox_targets_list, + bbox_weights_list, + num_total_samples=num_total_samples) + return dict(loss_cls=losses_cls, loss_bbox=losses_bbox) + + def _get_targets_single(self, + flat_cls_scores, + flat_bbox_preds, + flat_anchors, + valid_flags, + offsets, + offsets_ori, + gt_bboxes, + gt_bboxes_ignore, + gt_labels, + img_meta, + label_channels=1, + unmap_outputs=False): + """Compute regression and classification targets for anchors in a + single image. + + Args: + flat_anchors (torch.Tensor): Multi-level anchors of the image, + which are concatenated into a single tensor of shape + (num_anchors, 5) + valid_flags (torch.Tensor): Multi level valid flags of the image, + which are concatenated into a single tensor of + shape (num_anchors,). + gt_bboxes (torch.Tensor): Ground truth bboxes of the image, + shape (num_gts, 5). + img_meta (dict): Meta info of the image. + gt_bboxes_ignore (torch.Tensor): Ground truth bboxes to be + ignored, shape (num_ignored_gts, 5). + img_meta (dict): Meta info of the image. + gt_labels (torch.Tensor): Ground truth labels of each box, + shape (num_gts,). + label_channels (int): Channel of label. + unmap_outputs (bool): Whether to map outputs back to the original + set of anchors. + + Returns: + tuple (list[Tensor]): + + - labels_list (list[Tensor]): Labels of each level + - label_weights_list (list[Tensor]): Label weights of each \ + level + - bbox_targets_list (list[Tensor]): BBox targets of each level + - bbox_weights_list (list[Tensor]): BBox weights of each level + - num_total_pos (int): Number of positive samples in all images + - num_total_neg (int): Number of negative samples in all images + """ + inside_flags = rotated_anchor_inside_flags( + flat_anchors, valid_flags, img_meta['img_shape'][:2], + self.train_cfg.allowed_border) + if not inside_flags.any(): + return (None, ) * 7 + anchors = flat_anchors + detached_offsets = offsets.detach() + dy = torch.zeros(1, detached_offsets.size(1)).cuda() + dx = torch.zeros(1, detached_offsets.size(1)).cuda() + + for i in range(9): + dy += detached_offsets[2*i]/9 + dx += detached_offsets[2*i+1]/9 + + flat_anchors[...,0] = flat_anchors[...,0] + dx + flat_anchors[...,1] = flat_anchors[...,1] + dy + + deformable_anchors = flat_anchors + + + if self.assign_by_circumhbbox is not None: + gt_bboxes_assign = obb2hbb(gt_bboxes, self.assign_by_circumhbbox) + assign_result = self.assigner.assign( + flat_cls_scores, flat_bbox_preds, deformable_anchors, gt_bboxes_assign, gt_bboxes_ignore, + None if self.sampling else gt_labels) + else: + assign_result = self.assigner.assign( + flat_cls_scores, flat_bbox_preds, deformable_anchors, gt_bboxes, gt_bboxes_ignore, + None if self.sampling else gt_labels) + + sampling_result = self.sampler.sample(assign_result, anchors, + gt_bboxes) + + num_valid_anchors = anchors.shape[0] + bbox_targets = torch.zeros_like(anchors) + bbox_weights = torch.zeros_like(anchors) + labels = anchors.new_full((num_valid_anchors, ), + self.num_classes, + dtype=torch.long) + label_weights = anchors.new_zeros(num_valid_anchors, dtype=torch.float) + + pos_inds = sampling_result.pos_inds + neg_inds = sampling_result.neg_inds + + if len(pos_inds) > 0: + if not self.reg_decoded_bbox: + pos_bbox_targets = self.bbox_coder.encode( + anchors[pos_inds, :], sampling_result.pos_gt_bboxes) # WARNING: when encode, anchors changed + else: + pos_bbox_targets = sampling_result.pos_gt_bboxes + bbox_targets[pos_inds, :] = pos_bbox_targets + bbox_weights[pos_inds, :] = 1.0 + if gt_labels is None: + # Only rpn gives gt_labels as None + # Foreground is the first class since v2.5.0 + labels[pos_inds] = 0 + else: + labels[pos_inds] = gt_labels[ + sampling_result.pos_assigned_gt_inds] + if self.train_cfg.pos_weight <= 0: + label_weights[pos_inds] = 1.0 + else: + label_weights[pos_inds] = self.train_cfg.pos_weight + if len(neg_inds) > 0: + label_weights[neg_inds] = 1.0 + + # map up to original set of anchors + if unmap_outputs: + num_total_anchors = flat_anchors.size(0) + labels = unmap( + labels, num_total_anchors, inside_flags, + fill=self.num_classes) # fill bg label + label_weights = unmap(label_weights, num_total_anchors, + inside_flags) + bbox_targets = unmap(bbox_targets, num_total_anchors, inside_flags) + bbox_weights = unmap(bbox_weights, num_total_anchors, inside_flags) + + + return (labels, label_weights, bbox_targets, bbox_weights, pos_inds, + neg_inds, sampling_result) + + def get_targets(self, + cls_scores_list, + bbox_pred_list, + anchor_list, + valid_flag_list, + offsets, + gt_bboxes_list, + img_metas, + gt_bboxes_ignore_list=None, + gt_labels_list=None, + label_channels=1, + unmap_outputs=True, + return_sampling_results=False): + """Compute regression and classification targets for anchors in + multiple images. + + Args: + anchor_list (list[list[Tensor]]): Multi level anchors of each + image. The outer list indicates images, and the inner list + corresponds to feature levels of the image. Each element of + the inner list is a tensor of shape (num_anchors, 5). + valid_flag_list (list[list[Tensor]]): Multi level valid flags of + each image. The outer list indicates images, and the inner list + corresponds to feature levels of the image. Each element of + the inner list is a tensor of shape (num_anchors, ) + offsets (list[list[Tensor]]): Offsets of DCN. + gt_bboxes_list (list[Tensor]): Ground truth bboxes of each image. + img_metas (list[dict]): Meta info of each image. + gt_bboxes_ignore_list (list[Tensor]): Ground truth bboxes to be + ignored. + gt_labels_list (list[Tensor]): Ground truth labels of each box. + label_channels (int): Channel of label. + unmap_outputs (bool): Whether to map outputs back to the original + set of anchors. + + Returns: + tuple: Usually returns a tuple containing learning targets. + + - labels_list (list[Tensor]): Labels of each level. + - label_weights_list (list[Tensor]): Label weights of each \ + level. + - bbox_targets_list (list[Tensor]): BBox targets of each level. + - bbox_weights_list (list[Tensor]): BBox weights of each level. + - num_total_pos (int): Number of positive samples in all \ + images. + - num_total_neg (int): Number of negative samples in all \ + images. + + additional_returns: This function enables user-defined returns from + `self._get_targets_single`. These returns are currently refined + to properties at each feature map (i.e. having HxW dimension). + The results will be concatenated after the end + """ + num_imgs = len(img_metas) + assert len(anchor_list) == len(valid_flag_list) == num_imgs + + # anchor number of multi levels, [128^2, 64^2, 32^2, 16^2, 8^2] + num_level_anchors = [anchors.size(0) for anchors in anchor_list[0]] + + # concat all level anchors to a single tensor + + concat_anchor_list = [] + concat_valid_flag_list = [] + for i in range(num_imgs): + assert len(anchor_list[i]) == len(valid_flag_list[i]) + concat_anchor_list.append(torch.cat(anchor_list[i])) # a list whose len is batch size, each element is a tensor + concat_valid_flag_list.append(torch.cat(valid_flag_list[i])) + + # concat all level offsets to a single tensor + concat_offsets = [] + concat_offsets_ori = [] + lvl_offsets = [] + lvl_offsets_ori = [] + factor = img_metas[0]['img_shape'][0]/256 + + # concat all level cls/reg results to a single tensor + lvl_scores = [] + lvl_bboxes = [] + concat_cls_scores_list = [] + concat_bbox_pred_list = [] + + for i in range(len(cls_scores_list)): + reshaped_scores = cls_scores_list[i].detach().reshape(num_imgs,self.num_classes,-1) + reshaped_bboxes = bbox_pred_list[i].detach().reshape(num_imgs,5,-1) + lvl_scores.append(reshaped_scores) + lvl_bboxes.append(reshaped_bboxes) + cat_lvl_scores = torch.cat(lvl_scores, dim=-1) + cat_lvl_bboxes = torch.cat(lvl_bboxes, dim=-1) + + for j in range(num_imgs): + concat_cls_scores_list.append(cat_lvl_scores[j,...]) + concat_bbox_pred_list.append(cat_lvl_bboxes[j,...]) + + # multiply a factor to each offset + for k in range(len(offsets)): + reshaped_offsets_ori = offsets[k].reshape(num_imgs,18,-1) + reshaped_offsets = reshaped_offsets_ori*factor + lvl_offsets_ori.append(reshaped_offsets_ori) + lvl_offsets.append(reshaped_offsets) + factor = factor*2 + cat_lvl_offsets = torch.cat(lvl_offsets, dim=2) + + for j in range(num_imgs): + concat_offsets.append(cat_lvl_offsets[j,...]) + + # concat the offsets of multi_level + cat_lvl_offsets_ori = torch.cat(lvl_offsets_ori, dim=2) + for j in range(num_imgs): + concat_offsets_ori.append(cat_lvl_offsets_ori[j,...]) + + # compute targets for each image + if gt_bboxes_ignore_list is None: + gt_bboxes_ignore_list = [None for _ in range(num_imgs)] + if gt_labels_list is None: + gt_labels_list = [None for _ in range(num_imgs)] + results = multi_apply( + self._get_targets_single, + concat_cls_scores_list, + concat_bbox_pred_list, + concat_anchor_list, + concat_valid_flag_list, + concat_offsets, + concat_offsets_ori, + gt_bboxes_list, + gt_bboxes_ignore_list, + gt_labels_list, + img_metas, + label_channels=label_channels, + unmap_outputs=unmap_outputs) + (all_labels, all_label_weights, all_bbox_targets, all_bbox_weights, + pos_inds_list, neg_inds_list, sampling_results_list) = results[:7] + rest_results = list(results[7:]) # user-added return values + # no valid anchors + if any([labels is None for labels in all_labels]): + return None + # sampled anchors of all images + num_total_pos = sum([max(inds.numel(), 1) for inds in pos_inds_list]) + num_total_neg = sum([max(inds.numel(), 1) for inds in neg_inds_list]) + # split targets to a list w.r.t. multiple levels + labels_list = images_to_levels(all_labels, num_level_anchors) + label_weights_list = images_to_levels(all_label_weights, + num_level_anchors) + bbox_targets_list = images_to_levels(all_bbox_targets, + num_level_anchors) + bbox_weights_list = images_to_levels(all_bbox_weights, + num_level_anchors) + res = (labels_list, label_weights_list, bbox_targets_list, + bbox_weights_list, num_total_pos, num_total_neg) + if return_sampling_results: + res = res + (sampling_results_list, ) + for i, r in enumerate(rest_results): # user-added return values + rest_results[i] = images_to_levels(r, num_level_anchors) + + return res + tuple(rest_results) + + @force_fp32(apply_to=('cls_scores', 'bbox_preds')) + def filter_bboxes(self, cls_scores, bbox_preds): + """Filter predicted bounding boxes at each position of the feature + maps. Only one bounding boxes with highest score will be left at each + position. This filter will be used in R3Det prior to the first feature + refinement stage. + + Args: + cls_scores (list[Tensor]): Box scores for each scale level + Has shape (N, num_anchors * num_classes, H, W) + bbox_preds (list[Tensor]): Box energies / deltas for each scale + level with shape (N, num_anchors * 5, H, W) + + Returns: + list[list[Tensor]]: best or refined rbboxes of each level \ + of each image. + """ + num_levels = len(cls_scores) + assert num_levels == len(bbox_preds) + + num_imgs = cls_scores[0].size(0) + + for i in range(num_levels): + assert num_imgs == cls_scores[i].size(0) == bbox_preds[i].size(0) + + device = cls_scores[0].device + featmap_sizes = [cls_scores[i].shape[-2:] for i in range(num_levels)] + mlvl_anchors = self.anchor_generator.grid_priors( + featmap_sizes, device=device) + + bboxes_list = [[] for _ in range(num_imgs)] + + for lvl in range(num_levels): + cls_score = cls_scores[lvl] + bbox_pred = bbox_preds[lvl] + + anchors = mlvl_anchors[lvl] + + cls_score = cls_score.permute(0, 2, 3, 1) + cls_score = cls_score.reshape(num_imgs, -1, self.num_anchors, + self.cls_out_channels) + + cls_score, _ = cls_score.max(dim=-1, keepdim=True) + best_ind = cls_score.argmax(dim=-2, keepdim=True) + best_ind = best_ind.expand(-1, -1, -1, 5) + + bbox_pred = bbox_pred.permute(0, 2, 3, 1) + bbox_pred = bbox_pred.reshape(num_imgs, -1, self.num_anchors, 5) + best_pred = bbox_pred.gather( + dim=-2, index=best_ind).squeeze(dim=-2) + + anchors = anchors.reshape(-1, self.num_anchors, 5) + + for img_id in range(num_imgs): + best_ind_i = best_ind[img_id] + best_pred_i = best_pred[img_id] + best_anchor_i = anchors.gather( + dim=-2, index=best_ind_i).squeeze(dim=-2) + best_bbox_i = self.bbox_coder.decode(best_anchor_i, + best_pred_i) + bboxes_list[img_id].append(best_bbox_i.detach()) + + return bboxes_list + + @force_fp32(apply_to=('cls_scores', 'bbox_preds')) + def refine_bboxes(self, cls_scores, bbox_preds): + """This function will be used in S2ANet, whose num_anchors=1. + + Args: + cls_scores (list[Tensor]): Box scores for each scale level + Has shape (N, num_classes, H, W) + bbox_preds (list[Tensor]): Box energies / deltas for each scale + level with shape (N, 5, H, W) + + Returns: + list[list[Tensor]]: refined rbboxes of each level of each image. + """ + num_levels = len(cls_scores) + assert num_levels == len(bbox_preds) + num_imgs = cls_scores[0].size(0) + for i in range(num_levels): + assert num_imgs == cls_scores[i].size(0) == bbox_preds[i].size(0) + + device = cls_scores[0].device + featmap_sizes = [cls_scores[i].shape[-2:] for i in range(num_levels)] + mlvl_anchors = self.anchor_generator.grid_priors( + featmap_sizes, device=device) + + bboxes_list = [[] for _ in range(num_imgs)] + + for lvl in range(num_levels): + bbox_pred = bbox_preds[lvl] + bbox_pred = bbox_pred.permute(0, 2, 3, 1) + bbox_pred = bbox_pred.reshape(num_imgs, -1, 5) + anchors = mlvl_anchors[lvl] + + for img_id in range(num_imgs): + bbox_pred_i = bbox_pred[img_id] + decode_bbox_i = self.bbox_coder.decode(anchors, bbox_pred_i) + bboxes_list[img_id].append(decode_bbox_i.detach()) + + return bboxes_list + + @force_fp32(apply_to=('cls_scores', 'bbox_preds')) + def get_bboxes(self, + cls_scores, + bbox_preds, + offsets, + img_metas, + cfg=None, + rescale=False, + with_nms=True): + """Transform network output for a batch into bbox predictions. + + Args: + cls_scores (list[Tensor]): Box scores for each scale level + Has shape (N, num_anchors * num_classes, H, W) + bbox_preds (list[Tensor]): Box energies / deltas for each scale + level with shape (N, num_anchors * 5, H, W) + img_metas (list[dict]): Meta information of each image, e.g., + image size, scaling factor, etc. + cfg (mmcv.Config | None): Test / postprocessing configuration, + if None, test_cfg would be used + rescale (bool): If True, return boxes in original image space. + Default: False. + with_nms (bool): If True, do nms before return boxes. + Default: True. + + Returns: + list[tuple[Tensor, Tensor]]: Each item in result_list is 2-tuple. + The first item is an (n, 6) tensor, where the first 5 columns + are bounding box positions (cx, cy, w, h, a) and the + 6-th column is a score between 0 and 1. The second item is a + (n,) tensor where each item is the predicted class label of the + corresponding box. + + Example: + >>> import mmcv + >>> self = AnchorHead( + >>> num_classes=9, + >>> in_channels=1, + >>> anchor_generator=dict( + >>> type='AnchorGenerator', + >>> scales=[8], + >>> ratios=[0.5, 1.0, 2.0], + >>> strides=[4,])) + >>> img_metas = [{'img_shape': (32, 32, 3), 'scale_factor': 1}] + >>> cfg = mmcv.Config(dict( + >>> score_thr=0.00, + >>> nms=dict(type='nms', iou_thr=1.0), + >>> max_per_img=10)) + >>> feat = torch.rand(1, 1, 3, 3) + >>> cls_score, bbox_pred = self.forward_single(feat) + >>> # note the input lists are over different levels, not images + >>> cls_scores, bbox_preds = [cls_score], [bbox_pred] + >>> result_list = self.get_bboxes(cls_scores, bbox_preds, + >>> img_metas, cfg) + >>> det_bboxes, det_labels = result_list[0] + >>> assert len(result_list) == 1 + >>> assert det_bboxes.shape[1] == 5 + >>> assert len(det_bboxes) == len(det_labels) == cfg.max_per_img + """ + assert len(cls_scores) == len(bbox_preds) + num_levels = len(cls_scores) + + device = cls_scores[0].device + featmap_sizes = [cls_scores[i].shape[-2:] for i in range(num_levels)] + mlvl_anchors = self.anchor_generator.grid_priors( + featmap_sizes, device=device) + + result_list = [] + for img_id, _ in enumerate(img_metas): + offset_list = [ + offsets[i][img_id].detach() for i in range(num_levels) + ] + cls_score_list = [ + cls_scores[i][img_id].detach() for i in range(num_levels) + ] + bbox_pred_list = [ + bbox_preds[i][img_id].detach() for i in range(num_levels) + ] + img_shape = img_metas[img_id]['img_shape'] + scale_factor = img_metas[img_id]['scale_factor'] + if with_nms: + # some heads don't support with_nms argument + proposals = self._get_bboxes_single(cls_score_list, + bbox_pred_list, + mlvl_anchors, img_shape, + scale_factor, cfg, rescale) + else: + proposals = self._get_bboxes_single(cls_score_list, + bbox_pred_list, + mlvl_anchors, img_shape, + scale_factor, cfg, rescale, + with_nms) + result_list.append(proposals) + + return result_list + + + +