-
Notifications
You must be signed in to change notification settings - Fork 18
/
vis_utils.py
247 lines (212 loc) · 8.98 KB
/
vis_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
import os
import numpy as np
import matplotlib
# matplotlib.use("Agg")
from matplotlib import pyplot as plt
import matplotlib.cm as cmx
from matplotlib.patches import Polygon
import matplotlib.colors as colors
from mpl_toolkits.mplot3d import Axes3D
import torch
import utils
NUM_CLASS = 20
color_list = np.arange(NUM_CLASS)
def get_sem_list(room_type):
if room_type == 'bedroom':
cat2id = {'Nightstand': 0,
'Wardrobe': 1,
'King-size Bed': 2,
'Pendant Lamp': 3,
'Ceiling Lamp': 4,
'TV Stand': 5,
'Dressing Table': 6,
'Corner Table': 7,
'Drawer Chest': 8,
'Desk': 9,
'Lounge Chair': 10,
'Single bed': 11,
'Dining Chair': 12,
'Stool': 13,
'Bookcase': 14,
'Shelf': 15,
'Sideboard': 16,
'armchair': 17,
'Dressing Chair': 18,
'Kids Bed': 19}
elif room_type == 'living':
cat2id = {'Dining Chair': 0,
'Pendant Lamp': 1,
'Coffee Table': 2,
'TV Stand': 3,
'Dining Table': 4,
'Corner Table': 5,
'Multi-seat Sofa': 6,
'armchair': 7,
'Sideboard': 8,
'Lounge Chair': 9,
'Stool': 10,
'Ceiling Lamp': 11,
'Bookcase': 12,
'Drawer Chest': 13,
'Loveseat Sofa': 14,
'L-shaped Sofa': 15,
'Wine Cabinet': 16,
'Nightstand': 17,
'Barstool': 18,
'Round End Table': 19}
else:
raise AssertionError('unknown room type')
id2cat = {val: key for key, val in cat2id.items()}
sem_list = [id2cat[key] for key in list(range(NUM_CLASS))]
return sem_list, id2cat
def set_axes_equal(ax):
'''Make axes of 3D plot have equal scale so that spheres appear as spheres,
cubes as cubes, etc.. This is one possible solution to Matplotlib's
ax.set_aspect('equal') and ax.axis('equal') not working for 3D.
Input
ax: a matplotlib axis, e.g., as output from plt.gca().
'''
x_limits = ax.get_xlim3d()
y_limits = ax.get_ylim3d()
z_limits = ax.get_zlim3d()
x_range = abs(x_limits[1] - x_limits[0])
x_middle = np.mean(x_limits)
y_range = abs(y_limits[1] - y_limits[0])
y_middle = np.mean(y_limits)
z_range = abs(z_limits[1] - z_limits[0])
z_middle = np.mean(z_limits)
# The plot bounding box is a sphere in the sense of the infinity
# norm, hence I call half the max range the plot radius.
plot_radius = 0.5*max([x_range, y_range, z_range])
ax.set_xlim3d([x_middle - plot_radius, x_middle + plot_radius])
ax.set_ylim3d([y_middle - plot_radius, y_middle + plot_radius])
ax.set_zlim3d([z_middle - plot_radius, z_middle + plot_radius])
def draw_scene_3Dbox(ax, p, color, rot=None, abs_dim=16):
if abs_dim == 16:
angle_recon = utils.class2angle(np.argmax(p[:8]), p[8], num_class=8)
dir_1 = np.array([np.cos(angle_recon), np.sin(angle_recon), 0])
dir_2 = np.zeros((3))
dir_2[:2] = [-dir_1[1], dir_1[0]]
dir_3 = np.cross(dir_1, dir_2)
center = p[9:12]
size = p[12:15]
elif abs_dim == 10:
dir_1 = np.zeros((3))
dir_1[:2] = p[:2]
dir_1 = dir_1 / np.linalg.norm(dir_1)
dir_2 = np.zeros((3))
dir_2[:2] = [-dir_1[1], dir_1[0]]
dir_3 = np.cross(dir_1, dir_2)
center = p[3:6]
size = p[6:9]
cornerpoints = np.zeros([8, 3])
d1 = 0.5*size[1]*dir_1
d2 = 0.5*size[0]*dir_2
d3 = 0.5*size[2]*dir_3
#d3 = 0
cornerpoints[0][:] = center - d1 - d2 - d3
cornerpoints[1][:] = center - d1 + d2 - d3
cornerpoints[2][:] = center + d1 - d2 - d3
cornerpoints[3][:] = center + d1 + d2 - d3
cornerpoints[4][:] = center - d1 - d2 + d3
cornerpoints[5][:] = center - d1 + d2 + d3
cornerpoints[6][:] = center + d1 - d2 + d3
cornerpoints[7][:] = center + d1 + d2 + d3
#import ipdb; ipdb.set_trace()
ax.plot([cornerpoints[0][0], cornerpoints[1][0]], [cornerpoints[0][1], cornerpoints[1][1]],
[cornerpoints[0][2], cornerpoints[1][2]], c=color)
ax.plot([cornerpoints[0][0], cornerpoints[2][0]], [cornerpoints[0][1], cornerpoints[2][1]],
[cornerpoints[0][2], cornerpoints[2][2]], c=color)
ax.plot([cornerpoints[1][0], cornerpoints[3][0]], [cornerpoints[1][1], cornerpoints[3][1]],
[cornerpoints[1][2], cornerpoints[3][2]], c=color)
ax.plot([cornerpoints[2][0], cornerpoints[3][0]], [cornerpoints[2][1], cornerpoints[3][1]],
[cornerpoints[2][2], cornerpoints[3][2]], c=color)
ax.plot([cornerpoints[4][0], cornerpoints[5][0]], [cornerpoints[4][1], cornerpoints[5][1]],
[cornerpoints[4][2], cornerpoints[5][2]], c=color)
ax.plot([cornerpoints[4][0], cornerpoints[6][0]], [cornerpoints[4][1], cornerpoints[6][1]],
[cornerpoints[4][2], cornerpoints[6][2]], c=color)
ax.plot([cornerpoints[5][0], cornerpoints[7][0]], [cornerpoints[5][1], cornerpoints[7][1]],
[cornerpoints[5][2], cornerpoints[7][2]], c=color)
ax.plot([cornerpoints[6][0], cornerpoints[7][0]], [cornerpoints[6][1], cornerpoints[7][1]],
[cornerpoints[6][2], cornerpoints[7][2]], c=color)
ax.plot([cornerpoints[0][0], cornerpoints[4][0]], [cornerpoints[0][1], cornerpoints[4][1]],
[cornerpoints[0][2], cornerpoints[4][2]], c=color)
ax.plot([cornerpoints[1][0], cornerpoints[5][0]], [cornerpoints[1][1], cornerpoints[5][1]],
[cornerpoints[1][2], cornerpoints[5][2]], c=color)
ax.plot([cornerpoints[2][0], cornerpoints[6][0]], [cornerpoints[2][1], cornerpoints[6][1]],
[cornerpoints[2][2], cornerpoints[6][2]], c=color)
ax.plot([cornerpoints[3][0], cornerpoints[7][0]], [cornerpoints[3][1], cornerpoints[7][1]],
[cornerpoints[3][2], cornerpoints[7][2]], c=color)
return
def draw_scene_3D(data, name, num_class=30, num_each_class=4, is_torch=False, abs_dim=16, thres=None):
cmap = cmx.ScalarMappable(norm=matplotlib.colors.Normalize(vmin=0, vmax=num_class-1), cmap=plt.get_cmap('jet'))
if is_torch:
data = data.cpu().numpy()
fig = plt.figure(0, figsize=(14,14))
ax = fig.add_subplot(1, 1, 1, projection='3d')
ax.set_xlim(-3, 3)
ax.set_ylim(-3, 3)
ax.set_zlim(0, 6)
ax.set_xlabel('x')
ax.set_ylabel('y')
ax.set_zlabel('z')
for i in range(num_class):
for j in range(num_each_class):
dataline = data[i*num_each_class+j,:]
if type(thres) == float:
tt = thres
else:
tt = thres[i]
if dataline[-1] > tt:
draw_scene_3Dbox(ax=ax, p=dataline, color=cmap.to_rgba(color_list[i]), abs_dim=abs_dim)
set_axes_equal(ax)
plt.tight_layout()
plt.savefig(name)
plt.close()
def draw_scene_2Dbox(ax, dataline, color, sem, abs_dim=16):
if abs_dim == 16:
location = dataline[9:11]
size = dataline[12:14]
angle_recon = utils.class2angle(np.argmax(dataline[:8]), dataline[8], num_class=8)
n1 = np.array([np.cos(angle_recon), np.sin(angle_recon)])
n2 = np.array([-n1[1], n1[0]])
elif abs_dim == 10:
location = dataline[3:5]
size = dataline[6:8]
n1 = dataline[:2]
n1 = n1 / np.linalg.norm(n1)
n2 = np.array([-n1[1], n1[0]])
p1 = location + size[1]*n1/2.0 + size[0]*n2/2.0
p2 = location + size[1]*n1/2.0 - size[0]*n2/2.0
p3 = location - size[1]*n1/2.0 - size[0]*n2/2.0
p4 = location - size[1]*n1/2.0 + size[0]*n2/2.0
x = [p1[0], p2[0], p3[0], p4[0], p1[0]]
y = [p1[1], p2[1], p3[1], p4[1], p1[1]]
ax.plot(x, y, color=color)
ax.text(np.mean(x[:4]), np.mean(y[:4]), sem, fontsize=20)
o = location
o1 = location + 0.2 * n1
ax.plot([o[0], o1[0]], [o[1], o1[1]])
def draw_scene_2D(data, name, room_type, num_class=30, num_each_class=4, is_torch=False, abs_dim=16, thres=None, is_dump=True):
sem_list, _ = get_sem_list(room_type)
cmap = cmx.ScalarMappable(norm=matplotlib.colors.Normalize(vmin=0, vmax=num_class-1), cmap=plt.get_cmap('jet'))
if is_torch:
data = data.cpu().numpy()
fig = plt.figure(figsize=(14,14))
ax = fig.add_subplot(111)
for i in range(num_class):
for j in range(num_each_class):
dataline = data[i*num_each_class+j,:]
if type(thres) == float:
tt = thres
else:
tt = thres[i]
if dataline[-1] > tt:
draw_scene_2Dbox(ax=ax, dataline=dataline, color=cmap.to_rgba(color_list[i]), sem=sem_list[i], abs_dim=abs_dim)
ax.set_aspect('equal', 'datalim')
plt.tight_layout()
if is_dump:
plt.savefig(name)
plt.close()
else:
plt.show()