-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathtrades.py
89 lines (81 loc) · 3.36 KB
/
trades.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
"""
https://raw.githubusercontent.com/yaodongyu/TRADES/master/trades.py
ICML'19 paper "Theoretically Principled Trade-off between Robustness and Accuracy"
"""
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd import Variable
import torch.optim as optim
from torch.nn.modules.loss import _Loss
def trades_loss(model,
loss_fn,
x_natural,
y,
norm,
optimizer,
step_size=0.003,
epsilon=0.031,
perturb_steps=10,
beta=1.0,
version=None,
device="gpu"):
# define KL-loss
#criterion_kl = nn.KLDivLoss(size_average=False)
criterion_kl = nn.KLDivLoss(reduction='sum')
model.eval()
batch_size = len(x_natural)
# generate adversarial example
if norm == np.inf:
x_adv = x_natural.detach() + 0.001 * torch.randn(x_natural.shape).to(device).detach()
for _ in range(perturb_steps):
x_adv.requires_grad_()
with torch.enable_grad():
loss_kl = criterion_kl(F.log_softmax(model(x_adv), dim=1),
F.softmax(model(x_natural), dim=1))
grad = torch.autograd.grad(loss_kl, [x_adv])[0]
x_adv = x_adv.detach() + step_size * torch.sign(grad.detach())
x_adv = torch.min(torch.max(x_adv, x_natural - epsilon), x_natural + epsilon)
x_adv = torch.clamp(x_adv, 0.0, 1.0)
elif norm == 2:
delta = 0.001 * torch.randn(x_natural.shape).to(device).detach()
delta = Variable(delta.data, requires_grad=True)
# Setup optimizers
optimizer_delta = optim.SGD([delta], lr=epsilon / perturb_steps * 2)
for _ in range(perturb_steps):
adv = x_natural + delta
# optimize
optimizer_delta.zero_grad()
with torch.enable_grad():
loss = (-1) * criterion_kl(F.log_softmax(model(adv), dim=1),
F.softmax(model(x_natural), dim=1))
loss.backward()
# renorming gradient
grad_norms = delta.grad.view(batch_size, -1).norm(p=2, dim=1)
delta.grad.div_(grad_norms.view(-1, 1, 1, 1))
# avoid nan or inf if gradient is 0
if (grad_norms == 0).any():
delta.grad[grad_norms == 0] = torch.randn_like(delta.grad[grad_norms == 0])
optimizer_delta.step()
# projection
delta.data.add_(x_natural)
delta.data.clamp_(0, 1).sub_(x_natural)
delta.data.renorm_(p=2, dim=0, maxnorm=epsilon)
x_adv = Variable(x_natural + delta, requires_grad=False)
else:
x_adv = torch.clamp(x_adv, 0.0, 1.0)
model.train()
x_adv = Variable(torch.clamp(x_adv, 0.0, 1.0), requires_grad=False)
# zero gradient
optimizer.zero_grad()
# calculate robust loss
outputs = model(x_natural)
loss_natural = loss_fn(outputs, y)
loss_robust = (1.0 / batch_size) * criterion_kl(F.log_softmax(model(x_adv), dim=1),
F.softmax(model(x_natural), dim=1))
if version is not None and "sum" in version:
loss = loss_natural + beta * batch_size * loss_robust
else:
loss = loss_natural + beta * loss_robust
return outputs, loss