-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathrun_expt.py
364 lines (321 loc) · 16.1 KB
/
run_expt.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
import os, csv
import time
import argparse
import pandas as pd
import torch
import torch.nn as nn
from collections import defaultdict
from opacus import PrivacyEngine
import wilds
from wilds.common.data_loaders import get_train_loader, get_eval_loader
from wilds.common.grouper import CombinatorialGrouper
from utils import set_seed, Logger, BatchLogger, log_config, ParseKwargs, load, initialize_wandb, log_group_data, parse_bool, get_model_prefix
from train import train, evaluate
from algorithms.initializer import initialize_algorithm
from optimizer import NoisyOptimizerWrapper
from transforms import initialize_transform
from configs.utils import populate_defaults
import configs.supported as supported
import torch.multiprocessing
from dpsgdf import FairPrivacyEngine
def main():
''' to see default hyperparams for each dataset/model, look at configs/ '''
parser = argparse.ArgumentParser()
# Required arguments
parser.add_argument('-d', '--dataset', choices=wilds.supported_datasets, required=True)
parser.add_argument('--algorithm', required=True, choices=supported.algorithms)
parser.add_argument('--root_dir', required=True,
help='The directory where [dataset]/data can be found (or should be downloaded to, if it does not exist).')
parser.add_argument('--enable_privacy', default=False, action='store_true')
parser.add_argument('--enable_fair_privacy', default=False, action='store_true')
parser.add_argument('--apply_noise', default=False, action='store_true')
# Dataset
parser.add_argument('--split_scheme', help='Identifies how the train/val/test split is constructed. Choices are dataset-specific.')
parser.add_argument('--dataset_kwargs', nargs='*', action=ParseKwargs, default={})
parser.add_argument('--download', default=False, type=parse_bool, const=True, nargs='?',
help='If true, tries to downloads the dataset if it does not exist in root_dir.')
parser.add_argument('--subsample', default=False, type=parse_bool, const=True, nargs='?',
help='If true, subsample every group to the minimum group size.')
parser.add_argument('--frac', type=float, default=1.0,
help='Convenience parameter that scales all dataset splits down to the specified fraction, for development purposes. Note that this also scales the test set down, so the reported numbers are not comparable with the full test set.')
parser.add_argument('--version', default=None, type=str)
# Loaders
parser.add_argument('--loader_kwargs', nargs='*', action=ParseKwargs, default={})
parser.add_argument('--train_loader', choices=['standard', 'group'])
parser.add_argument('--uniform_over_groups', type=parse_bool, const=True, nargs='?')
parser.add_argument('--distinct_groups', type=parse_bool, const=True, nargs='?')
parser.add_argument('--n_groups_per_batch', type=int)
parser.add_argument('--batch_size', type=int)
parser.add_argument('--eval_loader', choices=['standard'], default='standard')
parser.add_argument('--weighted_uniform_iid', type=parse_bool, const=True, nargs='?')
parser.add_argument('--uniform_iid', type=parse_bool, const=True, nargs='?')
parser.add_argument("--sample_rate", type=float, default=0.001, metavar="SR",
help="sample rate used for batch construction (default: 0.001)",)
parser.add_argument("--clip_sample_rate", type=float, default=None, metavar="SR",
help=" (default: 0.01)",)
# Model
parser.add_argument('--model', choices=supported.models)
parser.add_argument('--model_kwargs', nargs='*', action=ParseKwargs, default={},
help='keyword arguments for model initialization passed as key1=value1 key2=value2')
# Transforms
parser.add_argument('--transform', choices=supported.transforms)
parser.add_argument('--target_resolution', nargs='+', type=int, help='The input resolution that images will be resized to before being passed into the model. For example, use --target_resolution 224 224 for a standard ResNet.')
parser.add_argument('--resize_scale', type=float)
parser.add_argument('--max_token_length', type=int)
# Objective
parser.add_argument('--loss_function', choices = supported.losses)
parser.add_argument('--loss_kwargs', nargs='*', action=ParseKwargs, default={},
help='keyword arguments for loss initialization passed as key1=value1 key2=value2')
# Algorithm
parser.add_argument('--groupby_fields', nargs='+')
parser.add_argument('--group_dro_step_size', type=float)
parser.add_argument('--coral_penalty_weight', type=float)
parser.add_argument('--irm_lambda', type=float)
parser.add_argument('--irm_penalty_anneal_iters', type=int)
parser.add_argument('--algo_log_metric')
# Model selection
parser.add_argument('--val_metric')
parser.add_argument('--val_metric_decreasing', type=parse_bool, const=True, nargs='?')
# Optimization
parser.add_argument('--n_epochs', type=int)
parser.add_argument('--optimizer', choices=supported.optimizers)
parser.add_argument('--lr', type=float)
parser.add_argument('--weight_decay', type=float)
parser.add_argument('--max_grad_norm', type=float)
parser.add_argument('--optimizer_kwargs', nargs='*', action=ParseKwargs, default={})
parser.add_argument('--sigma', type=float, default=1.0)
parser.add_argument('--max_per_sample_grad_norm', type=float, default=1.0)
parser.add_argument('--delta', type=float, default=1e-5)
parser.add_argument('--sigma2', type=float, default=1.0)
parser.add_argument('--C0', type=float, default=1.0)
# Scheduler
parser.add_argument('--scheduler', choices=supported.schedulers)
parser.add_argument('--scheduler_kwargs', nargs='*', action=ParseKwargs, default={})
parser.add_argument('--scheduler_metric_split', choices=['train', 'val'], default='val')
parser.add_argument('--scheduler_metric_name')
# Evaluation
parser.add_argument('--process_outputs_function', choices = supported.process_outputs_functions)
parser.add_argument('--evaluate_all_splits', type=parse_bool, const=True, nargs='?', default=True)
parser.add_argument('--eval_splits', nargs='+', default=[])
parser.add_argument('--eval_only', type=parse_bool, const=True, nargs='?', default=False)
parser.add_argument('--eval_epoch', default=None, type=int, help='If eval_only is set, then eval_epoch allows you to specify evaluating at a particular epoch. By default, it evaluates the best epoch by validation performance.')
# Misc
parser.add_argument('--device', type=int, default=0)
parser.add_argument('--seed', type=int, default=0)
parser.add_argument('--log_dir', default='./logs')
parser.add_argument('--log_every', default=50, type=int)
parser.add_argument('--save_step', type=int)
parser.add_argument('--save_best', type=parse_bool, const=True, nargs='?', default=True)
parser.add_argument('--save_last', type=parse_bool, const=True, nargs='?', default=True)
parser.add_argument('--save_pred', type=parse_bool, const=True, nargs='?', default=True)
parser.add_argument('--no_group_logging', type=parse_bool, const=True, nargs='?')
parser.add_argument('--use_wandb', type=parse_bool, const=True, nargs='?', default=False)
parser.add_argument('--progress_bar', type=parse_bool, const=True, nargs='?', default=False)
parser.add_argument('--resume', type=parse_bool, const=True, nargs='?', default=False)
config = parser.parse_args()
config = populate_defaults(config)
# For the GlobalWheat detection dataset,
# we need to change the multiprocessing strategy or there will be
# too many open file descriptors.
if config.dataset == 'globalwheat':
torch.multiprocessing.set_sharing_strategy('file_system')
# Set device
config.device = torch.device("cuda:" + str(config.device)) if torch.cuda.is_available() else torch.device("cpu")
# Initialize logs
if os.path.exists(config.log_dir) and config.resume:
resume=True
mode='a'
elif os.path.exists(config.log_dir) and config.eval_only:
resume=False
mode='a'
else:
resume=False
mode='w'
if not os.path.exists(config.log_dir):
os.makedirs(config.log_dir)
logger = Logger(os.path.join(config.log_dir, 'log.txt'), mode)
# Record config
log_config(config, logger)
# Set random seed
set_seed(config.seed)
# Data
full_dataset = wilds.get_dataset(
dataset=config.dataset,
version=config.version,
root_dir=config.root_dir,
download=config.download,
split_scheme=config.split_scheme,
**config.dataset_kwargs)
# To modify data augmentation, modify the following code block.
# If you want to use transforms that modify both `x` and `y`,
# set `do_transform_y` to True when initializing the `WILDSSubset` below.
train_transform = initialize_transform(
transform_name=config.transform,
config=config,
dataset=full_dataset,
is_training=True)
eval_transform = initialize_transform(
transform_name=config.transform,
config=config,
dataset=full_dataset,
is_training=False)
train_grouper = CombinatorialGrouper(
dataset=full_dataset,
groupby_fields=config.groupby_fields)
datasets = defaultdict(dict)
for split in full_dataset.split_dict.keys():
if split=='train':
transform = train_transform
verbose = True
elif split == 'val':
transform = eval_transform
verbose = True
else:
transform = eval_transform
verbose = False
# # Get subset
# datasets[split]['dataset'] = full_dataset.get_subset(
# split,
# frac=config.frac,
# transform=transform)
# Get subset
datasets[split]['dataset'] = full_dataset.get_subset(
split,
train_grouper=train_grouper,
frac=config.frac,
transform=transform,
subsample_to_minority=config.subsample)
if split == 'train':
datasets[split]['loader'] = get_train_loader(
loader=config.train_loader,
dataset=datasets[split]['dataset'],
batch_size=config.batch_size,
weighted_uniform_iid=config.weighted_uniform_iid,
uniform_iid=config.uniform_iid,
sample_rate=config.sample_rate,
uniform_over_groups=config.uniform_over_groups,
grouper=train_grouper,
distinct_groups=config.distinct_groups,
n_groups_per_batch=config.n_groups_per_batch,
clip_sample_rate=config.clip_sample_rate,
**config.loader_kwargs)
else:
datasets[split]['loader'] = get_eval_loader(
loader=config.eval_loader,
dataset=datasets[split]['dataset'],
grouper=train_grouper,
batch_size=config.batch_size,
**config.loader_kwargs)
# Set fields
datasets[split]['split'] = split
datasets[split]['name'] = full_dataset.split_names[split]
datasets[split]['verbose'] = verbose
# Loggers
datasets[split]['eval_logger'] = BatchLogger(
os.path.join(config.log_dir, f'{split}_eval.csv'), mode=mode, use_wandb=(config.use_wandb and verbose))
datasets[split]['algo_logger'] = BatchLogger(
os.path.join(config.log_dir, f'{split}_algo.csv'), mode=mode, use_wandb=(config.use_wandb and verbose))
if config.use_wandb:
initialize_wandb(config)
# Logging dataset info
# Show class breakdown if feasible
if config.no_group_logging and full_dataset.is_classification and full_dataset.y_size==1 and full_dataset.n_classes <= 10:
log_grouper = CombinatorialGrouper(
dataset=full_dataset,
groupby_fields=['y'])
elif config.no_group_logging:
log_grouper = None
else:
log_grouper = train_grouper
log_group_data(datasets, log_grouper, logger)
## Initialize algorithm
algorithm = initialize_algorithm(
config=config,
datasets=datasets,
train_grouper=train_grouper)
if config.enable_privacy:
privacy_engine = PrivacyEngine()
algorithm.model, algorithm.optimizer, datasets['train']['loader'] = privacy_engine.make_private(
module=algorithm.model,
optimizer=algorithm.optimizer,
data_loader=datasets['train']['loader'],
poisson_sampling=False,
noise_multiplier=config.sigma,
max_grad_norm=config.max_per_sample_grad_norm,
)
algorithm.privacy_engine = privacy_engine
if config.enable_fair_privacy:
group_info, group_counts = train_grouper.metadata_to_group(
datasets['train']['dataset'].metadata_array, return_counts=True)
train_grouper
privacy_engine = FairPrivacyEngine()
algorithm.model, algorithm.optimizer, datasets['train']['loader'] = privacy_engine.make_private(
module=algorithm.model,
optimizer=algorithm.optimizer,
data_loader=datasets['train']['loader'],
poisson_sampling=False,
noise_multiplier=config.sigma,
max_grad_norm=config.max_per_sample_grad_norm,
group_info=group_info,
n_groups=len(group_counts),
C0=config.C0,
sigma2=config.sigma2,
)
algorithm.privacy_engine = privacy_engine
if config.apply_noise:
algorithm.optimizer = NoisyOptimizerWrapper(algorithm.optimizer, noise_multiplier=config.sigma)
model_prefix = get_model_prefix(datasets['train'], config)
if not config.eval_only:
## Load saved results if resuming
resume_success = False
if resume:
save_path = model_prefix + 'epoch:last_model.pth'
if not os.path.exists(save_path):
epochs = [
int(file.split('epoch:')[1].split('_')[0])
for file in os.listdir(config.log_dir) if file.endswith('.pth')]
if len(epochs) > 0:
latest_epoch = max(epochs)
save_path = model_prefix + f'epoch:{latest_epoch}_model.pth'
try:
prev_epoch, best_val_metric = load(algorithm, save_path)
epoch_offset = prev_epoch + 1
logger.write(f'Resuming from epoch {epoch_offset} with best val metric {best_val_metric}')
resume_success = True
except FileNotFoundError:
pass
if resume_success == False:
epoch_offset=0
best_val_metric=None
train(
algorithm=algorithm,
datasets=datasets,
general_logger=logger,
config=config,
epoch_offset=epoch_offset,
best_val_metric=best_val_metric)
else:
if config.eval_epoch is None:
eval_model_path = model_prefix + 'epoch:best_model.pth'
else:
eval_model_path = model_prefix + f'epoch:{config.eval_epoch}_model.pth'
best_epoch, best_val_metric = load(algorithm, eval_model_path)
if config.eval_epoch is None:
epoch = best_epoch
else:
epoch = config.eval_epoch
if epoch == best_epoch:
is_best = True
evaluate(
algorithm=algorithm,
datasets=datasets,
epoch=epoch,
general_logger=logger,
config=config,
is_best=is_best)
logger.close()
for split in datasets:
datasets[split]['eval_logger'].close()
datasets[split]['algo_logger'].close()
if __name__=='__main__':
main()