forked from udacity/CarND-Advanced-Lane-Lines
-
Notifications
You must be signed in to change notification settings - Fork 186
/
processImage.py
195 lines (164 loc) · 7.2 KB
/
processImage.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
# -*- coding: utf-8 -*-
"""
Created on Sun Oct 8 11:22:29 2017
@author: yang
"""
import os
import cv2
import utils
import matplotlib.pyplot as plt
import numpy as np
#script mainly use for drawing the demo picture
cal_imgs = utils.get_images_by_dir('camera_cal')
object_points,img_points = utils.calibrate(cal_imgs,grid=(9,6))
#test_imgs = utils.get_images_by_dir('test_images')
test_imgs = utils.get_images_by_dir('new_test')
undistorted = []
for img in test_imgs:
img = utils.cal_undistort(img,object_points,img_points)
undistorted.append(img)
trans_on_test=[]
for img in undistorted:
src = np.float32([[(203, 720), (585, 460), (695, 460), (1127, 720)]])
dst = np.float32([[(320, 720), (320, 0), (960, 0), (960, 720)]])
M = cv2.getPerspectiveTransform(src, dst)
trans = cv2.warpPerspective(img, M, img.shape[1::-1], flags=cv2.INTER_LINEAR)
trans_on_test.append(trans)
thresh = []
binary_wrapeds = []
histogram = []
for img in undistorted:
x_thresh = utils.abs_sobel_thresh(img, orient='x', thresh_min=55, thresh_max=100)
mag_thresh = utils.mag_thresh(img, sobel_kernel=3, mag_thresh=(70, 255))
dir_thresh = utils.dir_threshold(img, sobel_kernel=3, thresh=(0.7, 1.3))
s_thresh = utils.hls_select(img,channel='s',thresh=(160, 255))
s_thresh_2 = utils.hls_select(img,channel='s',thresh=(200, 240))
white_mask = utils.select_white(img)
yellow_mask = utils.select_yellow(img)
combined = np.zeros_like(mag_thresh)
# combined[(x_thresh==1) | ((mag_thresh == 1) & (dir_thresh == 1)) | (s_thresh==1)] = 1
# combined[((mag_thresh == 1) & (dir_thresh == 1))] = 1
combined[((x_thresh == 1) | (s_thresh == 1)) | ((mag_thresh == 1) & (dir_thresh == 1))| (white_mask>0)|(s_thresh_2 == 1) ]=1
src = np.float32([[(203, 720), (585, 460), (695, 460), (1127, 720)]])
dst = np.float32([[(320, 720), (320, 0), (960, 0), (960, 720)]])
M = cv2.getPerspectiveTransform(src, dst)
binary_warped = cv2.warpPerspective(combined, M, img.shape[1::-1], flags=cv2.INTER_LINEAR)
hist = np.sum(binary_warped[binary_warped.shape[0]//2:,:], axis=0)
histogram.append(hist)
binary_wrapeds.append(binary_warped)
thresh.append(combined)
plt.figure(figsize=(20,68))
i=0
for binary_warped in binary_wrapeds:
# Take a histogram of the bottom half of the image
histogram = np.sum(binary_warped[binary_warped.shape[0]//2:,:], axis=0)
# Create an output image to draw on and visualize the result
out_img = np.dstack((binary_warped, binary_warped, binary_warped))*255
# Find the peak of the left and right halves of the histogram
# These will be the starting point for the left and right lines
midpoint = np.int(histogram.shape[0]/2)
leftx_base = np.argmax(histogram[:midpoint])
rightx_base = np.argmax(histogram[midpoint:]) + midpoint
# Choose the number of sliding windows
nwindows = 9
# Set height of windows
window_height = np.int(binary_warped.shape[0]/nwindows)
# Identify the x and y positions of all nonzero pixels in the image
nonzero = binary_warped.nonzero()
nonzeroy = np.array(nonzero[0])
nonzerox = np.array(nonzero[1])
# Current positions to be updated for each window
leftx_current = leftx_base
rightx_current = rightx_base
# Set the width of the windows +/- margin
margin = 100
# Set minimum number of pixels found to recenter window
minpix = 50
# Create empty lists to receive left and right lane pixel indices
left_lane_inds = []
right_lane_inds = []
# Step through the windows one by one
for window in range(nwindows):
# Identify window boundaries in x and y (and right and left)
win_y_low = binary_warped.shape[0] - (window+1)*window_height
win_y_high = binary_warped.shape[0] - window*window_height
win_xleft_low = leftx_current - margin
win_xleft_high = leftx_current + margin
win_xright_low = rightx_current - margin
win_xright_high = rightx_current + margin
# Draw the windows on the visualization image
cv2.rectangle(out_img,(win_xleft_low,win_y_low),(win_xleft_high,win_y_high),
(0,255,0), 2)
cv2.rectangle(out_img,(win_xright_low,win_y_low),(win_xright_high,win_y_high),
(0,255,0), 2)
# Identify the nonzero pixels in x and y within the window
good_left_inds = ((nonzeroy >= win_y_low) & (nonzeroy < win_y_high) &
(nonzerox >= win_xleft_low) & (nonzerox < win_xleft_high)).nonzero()[0]
good_right_inds = ((nonzeroy >= win_y_low) & (nonzeroy < win_y_high) &
(nonzerox >= win_xright_low) & (nonzerox < win_xright_high)).nonzero()[0]
# Append these indices to the lists
left_lane_inds.append(good_left_inds)
right_lane_inds.append(good_right_inds)
# If you found > minpix pixels, recenter next window on their mean position
if len(good_left_inds) > minpix:
leftx_current = np.int(np.mean(nonzerox[good_left_inds]))
if len(good_right_inds) > minpix:
rightx_current = np.int(np.mean(nonzerox[good_right_inds]))
# Concatenate the arrays of indices
left_lane_inds = np.concatenate(left_lane_inds)
right_lane_inds = np.concatenate(right_lane_inds)
# Extract left and right line pixel positions
leftx = nonzerox[left_lane_inds]
lefty = nonzeroy[left_lane_inds]
rightx = nonzerox[right_lane_inds]
righty = nonzeroy[right_lane_inds]
# Fit a second order polynomial to each
left_fit = np.polyfit(lefty, leftx, 2)
right_fit = np.polyfit(righty, rightx, 2)
# Generate x and y values for plotting
ploty = np.linspace(0, binary_warped.shape[0]-1, binary_warped.shape[0] )
left_fitx = left_fit[0]*ploty**2 + left_fit[1]*ploty + left_fit[2]
right_fitx = right_fit[0]*ploty**2 + right_fit[1]*ploty + right_fit[2]
plt.subplot(2*len(thresh),2,2*i+1)
plt.imshow(binary_warped,cmap ='gray')
plt.subplot(2*len(thresh),2,2*i+2)
i+=1
out_img[nonzeroy[left_lane_inds], nonzerox[left_lane_inds]] = [255, 0, 0]
out_img[nonzeroy[right_lane_inds], nonzerox[right_lane_inds]] = [0, 0, 255]
plt.imshow(out_img)
plt.plot(left_fitx, ploty, color='yellow')
plt.plot(right_fitx, ploty, color='yellow')
plt.xlim(0, 1280)
plt.ylim(720, 0)
plt.figure(figsize=(20,68))
for i in range(len(thresh)):
plt.subplot(2*len(thresh),2,2*i+1)
# plt.title('before thresholds')
plt.imshow(undistorted[i][:,:,::-1])
plt.subplot(2*len(thresh),2,2*i+2)
# plt.title('after thresholds')
plt.imshow(thresh[i],cmap='gray')
#
#plt.figure(figsize=(20,68))
#for i in range(len(thresh)):
#
# plt.subplot(2*len(thresh),2,2*i+1)
# plt.title('thresholded_wraped image')
# plt.imshow(thresh[i],cmap ='gray')
#
# plt.subplot(2*len(thresh),2,2*i+2)
# plt.title('histogram')
# plt.plot(histogram[i])
#
#undist = utils.cal_undistort(cal_imgs[0],object_points,img_points)
#plt.figure(figsize=(20,10))
#plt.subplot(2,2,1)
#plt.title('before undistorted')
#plt.imshow(cal_imgs[0][:,:,::-1])
#
#plt.subplot(2,2,2)
#plt.title('after undistorted')
#plt.imshow(undist[:,:,::-1])
#test = utils.select_yellow(undistorted[0])
#plt.imshow(test)
#print(test.shape)