-
Notifications
You must be signed in to change notification settings - Fork 45
/
Copy pathRelationTransformerModel.py
630 lines (513 loc) · 25.5 KB
/
RelationTransformerModel.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
##########################################################
# Copyright 2019 Oath Inc.
# Licensed under the terms of the MIT license.
# Please see LICENSE file in the project root for terms.
##########################################################
# This file contains Att2in2, AdaAtt, AdaAttMO, TopDown model
# AdaAtt is from Knowing When to Look: Adaptive Attention via A Visual Sentinel for Image Captioning
# https://arxiv.org/abs/1612.01887
# AdaAttMO is a modified version with maxout lstm
# Att2in is from Self-critical Sequence Training for Image Captioning
# https://arxiv.org/abs/1612.00563
# In this file we only have Att2in2, which is a slightly different version of att2in,
# in which the img feature embedding and word embedding is the same as what in adaatt.
# TopDown is from Bottom-Up and Top-Down Attention for Image Captioning and VQA
# https://arxiv.org/abs/1707.07998
# However, it may not be identical to the author's architecture.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import torch
import torch.nn as nn
import torch.nn.functional as F
import misc.utils as utils
#utils.PositionalEmbedding()
import copy
import math
import numpy as np
from .CaptionModel import CaptionModel
from .AttModel import sort_pack_padded_sequence, pad_unsort_packed_sequence, pack_wrapper
class EncoderDecoder(nn.Module):
"""
A standard Encoder-Decoder architecture. Base for this and many
other models.
"""
def __init__(self, encoder, decoder, src_embed, tgt_embed, generator):
super(EncoderDecoder, self).__init__()
self.encoder = encoder
self.decoder = decoder
self.src_embed = src_embed
self.tgt_embed = tgt_embed
self.generator = generator
def forward(self, src, boxes, tgt, src_mask, tgt_mask):
"Take in and process masked src and target sequences."
return self.decode(self.encode(src, boxes, src_mask), src_mask,
tgt, tgt_mask)
def encode(self, src, boxes, src_mask):
return self.encoder(self.src_embed(src), boxes, src_mask)
def decode(self, memory, src_mask, tgt, tgt_mask):
return self.decoder(self.tgt_embed(tgt), memory, src_mask, tgt_mask)
class Generator(nn.Module):
"Define standard linear + softmax generation step."
def __init__(self, d_model, vocab):
super(Generator, self).__init__()
self.proj = nn.Linear(d_model, vocab)
def forward(self, x):
return F.log_softmax(self.proj(x), dim=-1)
def clones(module, N):
"Produce N identical layers."
return nn.ModuleList([copy.deepcopy(module) for _ in range(N)])
class Encoder(nn.Module):
"Core encoder is a stack of N layers"
def __init__(self, layer, N):
super(Encoder, self).__init__()
self.layers = clones(layer, N)
self.norm = LayerNorm(layer.size)
def forward(self, x, box, mask):
"Pass the input (and mask) through each layer in turn."
for layer in self.layers:
x = layer(x, box, mask)
return self.norm(x)
class LayerNorm(nn.Module):
"Construct a layernorm module (See citation for details)."
def __init__(self, features, eps=1e-6):
super(LayerNorm, self).__init__()
self.a_2 = nn.Parameter(torch.ones(features))
self.b_2 = nn.Parameter(torch.zeros(features))
self.eps = eps
def forward(self, x):
mean = x.mean(-1, keepdim=True)
std = x.std(-1, keepdim=True)
return self.a_2 * (x - mean) / (std + self.eps) + self.b_2
class SublayerConnection(nn.Module):
"""
A residual connection followed by a layer norm.
Note for code simplicity the norm is first as opposed to last.
"""
def __init__(self, size, dropout):
super(SublayerConnection, self).__init__()
self.norm = LayerNorm(size)
self.dropout = nn.Dropout(dropout)
def forward(self, x, sublayer):
"Apply residual connection to any sublayer with the same size."
return x + self.dropout(sublayer(self.norm(x)))
class EncoderLayer(nn.Module):
"Encoder is made up of self-attn and feed forward (defined below)"
def __init__(self, size, self_attn, feed_forward, dropout):
super(EncoderLayer, self).__init__()
self.self_attn = self_attn
self.feed_forward = feed_forward
self.sublayer = clones(SublayerConnection(size, dropout), 2)
self.size = size
def forward(self, x, box, mask):
"Follow Figure 1 (left) for connections."
x = self.sublayer[0](x, lambda x: self.self_attn(x, x, x, box, mask))
return self.sublayer[1](x, self.feed_forward)
class Decoder(nn.Module):
"Generic N layer decoder with masking."
def __init__(self, layer, N):
super(Decoder, self).__init__()
self.layers = clones(layer, N)
self.norm = LayerNorm(layer.size)
def forward(self, x, memory, src_mask, tgt_mask):
for layer in self.layers:
x = layer(x, memory, src_mask, tgt_mask)
return self.norm(x)
class DecoderLayer(nn.Module):
"Decoder is made of self-attn, src-attn, and feed forward (defined below)"
def __init__(self, size, self_attn, src_attn, feed_forward, dropout):
super(DecoderLayer, self).__init__()
self.size = size
self.self_attn = self_attn
self.src_attn = src_attn
self.feed_forward = feed_forward
self.sublayer = clones(SublayerConnection(size, dropout), 3)
def forward(self, x, memory, src_mask, tgt_mask):
"Follow Figure 1 (right) for connections."
m = memory
x = self.sublayer[0](x, lambda x: self.self_attn(x, x, x, tgt_mask))
x = self.sublayer[1](x, lambda x: self.src_attn(x, m, m, src_mask))
return self.sublayer[2](x, self.feed_forward)
def subsequent_mask(size):
"Mask out subsequent positions."
attn_shape = (1, size, size)
subsequent_mask = np.triu(np.ones(attn_shape), k=1).astype('uint8')
return torch.from_numpy(subsequent_mask) == 0
def attention(query, key, value, mask=None, dropout=None):
"Compute 'Scaled Dot Product Attention'"
d_k = query.size(-1)
scores = torch.matmul(query, key.transpose(-2, -1)) \
/ math.sqrt(d_k)
if mask is not None:
scores = scores.masked_fill(mask == 0, -1e9)
p_attn = F.softmax(scores, dim = -1)
if dropout is not None:
p_attn = dropout(p_attn)
return torch.matmul(p_attn, value), p_attn
class MultiHeadedAttention(nn.Module):
def __init__(self, h, d_model, dropout=0.1):
"Take in model size and number of heads."
super(MultiHeadedAttention, self).__init__()
assert d_model % h == 0
# We assume d_v always equals d_k
self.d_k = d_model // h
self.h = h
self.linears = clones(nn.Linear(d_model, d_model), 4)
self.attn = None
self.dropout = nn.Dropout(p=dropout)
def forward(self, query, key, value, mask=None):
"Implements Figure 2"
if mask is not None:
# Same mask applied to all h heads.
mask = mask.unsqueeze(1)
nbatches = query.size(0)
# 1) Do all the linear projections in batch from d_model => h x d_k
query, key, value = \
[l(x).view(nbatches, -1, self.h, self.d_k).transpose(1, 2)
for l, x in zip(self.linears, (query, key, value))]
# 2) Apply attention on all the projected vectors in batch.
x, self.attn = attention(query, key, value, mask=mask,
dropout=self.dropout)
# 3) "Concat" using a view and apply a final linear.
x = x.transpose(1, 2).contiguous() \
.view(nbatches, -1, self.h * self.d_k)
return self.linears[-1](x)
def box_attention(query, key, value, box_relation_embds_matrix, mask=None, dropout=None):
'''
Compute 'Scaled Dot Product Attention as in paper Relation Networks for Object Detection'.
Follow the implementation in https://github.com/heefe92/Relation_Networks-pytorch/blob/master/model.py#L1026-L1055
'''
N = value.size()[:2]
dim_k = key.size(-1)
dim_g = box_relation_embds_matrix.size()[-1]
w_q = query
w_k = key.transpose(-2, -1)
w_v = value
#attention weights
scaled_dot = torch.matmul(w_q,w_k)
scaled_dot = scaled_dot / np.sqrt(dim_k)
if mask is not None:
scaled_dot = scaled_dot.masked_fill(mask == 0, -1e9)
#w_g = box_relation_embds_matrix.view(N,N)
w_g = box_relation_embds_matrix
w_a = scaled_dot
#w_a = scaled_dot.view(N,N)
# multiplying log of geometric weights by feature weights
w_mn = torch.log(torch.clamp(w_g, min = 1e-6)) + w_a
w_mn = torch.nn.Softmax(dim=-1)(w_mn)
if dropout is not None:
w_mn = dropout(w_mn)
output = torch.matmul(w_mn,w_v)
return output, w_mn
class BoxMultiHeadedAttention(nn.Module):
'''
Self-attention layer with relative position weights.
Following the paper "Relation Networks for Object Detection" in https://arxiv.org/pdf/1711.11575.pdf
'''
def __init__(self, h, d_model, trignometric_embedding=True, legacy_extra_skip=False, dropout=0.1):
"Take in model size and number of heads."
super(BoxMultiHeadedAttention, self).__init__()
assert d_model % h == 0
self.trignometric_embedding=trignometric_embedding
self.legacy_extra_skip = legacy_extra_skip
# We assume d_v always equals d_k
self.h = h
self.d_k = d_model // h
if self.trignometric_embedding:
self.dim_g = 64
else:
self.dim_g = 4
geo_feature_dim = self.dim_g
#matrices W_q, W_k, W_v, and one last projection layer
self.linears = clones(nn.Linear(d_model, d_model), 4)
self.WGs = clones(nn.Linear(geo_feature_dim, 1, bias=True),8)
self.attn = None
self.dropout = nn.Dropout(p=dropout)
def forward(self, input_query, input_key, input_value, input_box, mask=None):
"Implements Figure 2 of Relation Network for Object Detection"
if mask is not None:
# Same mask applied to all h heads.
mask = mask.unsqueeze(1)
nbatches = input_query.size(0)
#tensor with entries R_mn given by a hardcoded embedding of the relative position between bbox_m and bbox_n
relative_geometry_embeddings = utils.BoxRelationalEmbedding(input_box, trignometric_embedding= self.trignometric_embedding)
flatten_relative_geometry_embeddings = relative_geometry_embeddings.view(-1,self.dim_g)
# 1) Do all the linear projections in batch from d_model => h x d_k
query, key, value = \
[l(x).view(nbatches, -1, self.h, self.d_k).transpose(1, 2)
for l, x in zip(self.linears, (input_query, input_key, input_value))]
box_size_per_head = list(relative_geometry_embeddings.shape[:3])
box_size_per_head.insert(1, 1)
relative_geometry_weights_per_head = [l(flatten_relative_geometry_embeddings).view(box_size_per_head) for l in self.WGs]
relative_geometry_weights = torch.cat((relative_geometry_weights_per_head),1)
relative_geometry_weights = F.relu(relative_geometry_weights)
# 2) Apply attention on all the projected vectors in batch.
x, self.box_attn = box_attention(query, key, value, relative_geometry_weights, mask=mask,
dropout=self.dropout)
# 3) "Concat" using a view and apply a final linear.
x = x.transpose(1, 2).contiguous() \
.view(nbatches, -1, self.h * self.d_k)
# An extra internal skip connection is added. This is only
# kept here for compatibility with some legacy models. In
# general, there is no advantage in using it, as there is
# already an outer skip connection surrounding this layer.
if self.legacy_extra_skip:
x = input_value + x
return self.linears[-1](x)
class PositionwiseFeedForward(nn.Module):
"Implements FFN equation."
def __init__(self, d_model, d_ff, dropout=0.1):
super(PositionwiseFeedForward, self).__init__()
self.w_1 = nn.Linear(d_model, d_ff)
self.w_2 = nn.Linear(d_ff, d_model)
self.dropout = nn.Dropout(dropout)
def forward(self, x):
return self.w_2(self.dropout(F.relu(self.w_1(x))))
class Embeddings(nn.Module):
def __init__(self, d_model, vocab):
super(Embeddings, self).__init__()
self.lut = nn.Embedding(vocab, d_model)
self.d_model = d_model
def forward(self, x):
return self.lut(x) * math.sqrt(self.d_model)
class PositionalEncoding(nn.Module):
"Implement the PE function."
def __init__(self, d_model, dropout, max_len=5000):
super(PositionalEncoding, self).__init__()
self.dropout = nn.Dropout(p=dropout)
# Compute the positional encodings once in log space.
pe = torch.zeros(max_len, d_model)
position = torch.arange(0, max_len).unsqueeze(1).float()
div_term = torch.exp(torch.arange(0, d_model, 2).float() *
-(math.log(10000.0) / d_model))
pe[:, 0::2] = torch.sin(position * div_term)
pe[:, 1::2] = torch.cos(position * div_term)
pe = pe.unsqueeze(0)
self.register_buffer('pe', pe)
def forward(self, x):
x = x + self.pe[:, :x.size(1)]
return self.dropout(x)
class RelationTransformerModel(CaptionModel):
def make_model(self, src_vocab, tgt_vocab, N=6,
d_model=512, d_ff=2048, h=8, dropout=0.1,
trignometric_embedding=True, legacy_extra_skip=False):
"Helper: Construct a model from hyperparameters."
c = copy.deepcopy
bbox_attn = BoxMultiHeadedAttention(h, d_model, trignometric_embedding, legacy_extra_skip)
attn = MultiHeadedAttention(h, d_model)
ff = PositionwiseFeedForward(d_model, d_ff, dropout)
position = PositionalEncoding(d_model, dropout)
#position = BoxEncoding(d_model, dropout)
model = EncoderDecoder(
Encoder(EncoderLayer(d_model, c(bbox_attn), c(ff), dropout), N),
Decoder(DecoderLayer(d_model, c(attn), c(attn),
c(ff), dropout), N),
lambda x:x, # nn.Sequential(Embeddings(d_model, src_vocab), c(position)),
nn.Sequential(Embeddings(d_model, tgt_vocab), c(position)),
Generator(d_model, tgt_vocab))
# This was important from their code.
# Initialize parameters with Glorot / fan_avg.
for p in model.parameters():
if p.dim() > 1:
nn.init.xavier_uniform_(p)
return model
def __init__(self, opt):
super(RelationTransformerModel, self).__init__()
self.opt = opt
# self.config = yaml.load(open(opt.config_file))
# d_model = self.input_encoding_size # 512
self.vocab_size = opt.vocab_size
self.input_encoding_size = opt.input_encoding_size
# #self.rnn_type = opt.rnn_type
self.rnn_size = opt.rnn_size
# self.num_layers = opt.num_layers
self.drop_prob_lm = opt.drop_prob_lm
self.seq_length = opt.seq_length
# self.fc_feat_size = opt.fc_feat_size
self.att_feat_size = opt.att_feat_size
# self.att_hid_size = opt.att_hid_size
self.use_bn = getattr(opt, 'use_bn', 0)
self.ss_prob = 0.0 # Schedule sampling probability
# self.embed = nn.Sequential(nn.Embedding(self.vocab_size + 1, self.input_encoding_size),
# nn.ReLU(),
# nn.Dropout(self.drop_prob_lm))
# self.fc_embed = nn.Sequential(nn.Linear(self.fc_feat_size, self.rnn_size),
# nn.ReLU(),
# nn.Dropout(self.drop_prob_lm))
self.att_embed = nn.Sequential(*(
((nn.BatchNorm1d(self.att_feat_size),) if self.use_bn else ())+
(nn.Linear(self.att_feat_size, self.input_encoding_size),
nn.ReLU(),
nn.Dropout(self.drop_prob_lm))+
((nn.BatchNorm1d(self.input_encoding_size),) if self.use_bn==2 else ())))
self.box_trignometric_embedding = getattr(opt, 'box_trignometric_embedding', True)
self.legacy_extra_skip = getattr(opt, 'legacy_extra_skip', False)
tgt_vocab = self.vocab_size + 1
self.model = self.make_model(
0, tgt_vocab, N=opt.num_layers, d_model=opt.input_encoding_size,
d_ff=opt.rnn_size,
trignometric_embedding=self.box_trignometric_embedding,
legacy_extra_skip=self.legacy_extra_skip)
# def init_hidden(self, bsz):
# weight = next(self.parameters())
# return (weight.new_zeros(self.num_layers, bsz, self.rnn_size),
# weight.new_zeros(self.num_layers, bsz, self.rnn_size))
def clip_att(self, att_feats, att_masks):
# Clip the length of att_masks and att_feats to the maximum length
if att_masks is not None:
max_len = att_masks.data.long().sum(1).max()
att_feats = att_feats[:, :max_len].contiguous()
att_masks = att_masks[:, :max_len].contiguous()
return att_feats, att_masks
# def _prepare_feature(self, fc_feats, att_feats, att_masks):
# # embed fc and att feats
# fc_feats = self.fc_embed(fc_feats)
# att_feats = pack_wrapper(self.att_embed, att_feats, att_masks)
# # Project the attention feats first to reduce memory and computation comsumptions.
# p_att_feats = self.ctx2att(att_feats)
# return fc_feats, att_feats, p_att_feats
def _prepare_feature(self, att_feats, att_masks=None, boxes=None, seq=None):
att_feats, att_masks = self.clip_att(att_feats, att_masks)
att_feats = pack_wrapper(self.att_embed, att_feats, att_masks)
boxes = self.clip_att(boxes, att_masks)[0]
if att_masks is None:
att_masks = att_feats.new_ones(att_feats.shape[:2], dtype=torch.long)
att_masks = att_masks.unsqueeze(-2)
if seq is not None:
# crop the last one
seq = seq[:,:-1]
seq_mask = (seq.data > 0)
seq_mask[:,0] = 1
seq_mask = seq_mask.unsqueeze(-2)
seq_mask = seq_mask & subsequent_mask(seq.size(-1)).to(seq_mask)
else:
seq_mask = None
return att_feats,boxes, seq, att_masks, seq_mask
def _forward(self, fc_feats, att_feats, boxes, seq, att_masks=None):
att_feats, boxes, seq, att_masks, seq_mask = self._prepare_feature(att_feats, att_masks, boxes, seq)
out = self.model(att_feats, boxes, seq, att_masks, seq_mask)
outputs = self.model.generator(out)
return outputs
def get_logprobs_state(self, it, memory, mask, state):
"""
state = [ys.unsqueeze(0)]
"""
if state is None:
ys = it.unsqueeze(1)
else:
ys = torch.cat([state[0][0], it.unsqueeze(1)], dim=1)
out = self.model.decode(memory, mask,
ys,
subsequent_mask(ys.size(1))
.to(memory.device))
logprobs = self.model.generator(out[:, -1])
return logprobs, [ys.unsqueeze(0)]
def _sample_beam(self, fc_feats, att_feats, boxes, att_masks=None, opt={}):
beam_size = opt.get('beam_size', 10)
batch_size = fc_feats.size(0)
att_feats, boxes, seq, att_masks, seq_mask = self._prepare_feature(att_feats, att_masks, boxes)
memory = self.model.encode(att_feats, boxes, att_masks)
assert beam_size <= self.vocab_size + 1, 'lets assume this for now, otherwise this corner case causes a few headaches down the road. can be dealt with in future if needed'
seq = torch.LongTensor(self.seq_length, batch_size).zero_()
seqLogprobs = torch.FloatTensor(self.seq_length, batch_size)
# lets process every image independently for now, for simplicity
self.done_beams = [[] for _ in range(batch_size)]
for k in range(batch_size):
state = None
tmp_memory = memory[k:k+1].expand(*((beam_size,)+memory.size()[1:])).contiguous()
tmp_att_masks = att_masks[k:k+1].expand(*((beam_size,)+att_masks.size()[1:])).contiguous() if att_masks is not None else None
for t in range(1):
if t == 0: # input <bos>
it = fc_feats.new_zeros([beam_size], dtype=torch.long)
logprobs, state = self.get_logprobs_state(it, tmp_memory, tmp_att_masks, state)
self.done_beams[k] = self.beam_search(state, logprobs, tmp_memory, tmp_att_masks, opt=opt)
seq[:, k] = self.done_beams[k][0]['seq'] # the first beam has highest cumulative score
seqLogprobs[:, k] = self.done_beams[k][0]['logps']
# return the samples and their log likelihoods
return seq.transpose(0, 1), seqLogprobs.transpose(0, 1)
def _sample_(self, fc_feats, att_feats, boxes, att_masks=None, opt={}):
sample_max = opt.get('sample_max', 1)
beam_size = opt.get('beam_size', 1)
temperature = opt.get('temperature', 1.0)
decoding_constraint = opt.get('decoding_constraint', 0)
if beam_size > 1:
return self._sample_beam(fc_feats, att_feats, att_masks, opt)
if sample_max:
with torch.no_grad():
seq_, seqLogprobs_ = self._sample_(fc_feats, att_feats, boxes, att_masks, opt)
batch_size = att_feats.shape[0]
att_feats, boxes, seq, att_masks, seq_mask = self._prepare_feature(att_feats, att_masks, boxes)
memory = self.model.encode(att_feats, boxes, att_masks)
ys = torch.zeros((batch_size, 1), dtype=torch.long).to(att_feats.device)
seq = att_feats.new_zeros((batch_size, self.seq_length), dtype=torch.long)
seqLogprobs = att_feats.new_zeros(batch_size, self.seq_length)
for i in range(self.seq_length):
out = self.model.decode(memory, att_masks,
ys,
subsequent_mask(ys.size(1))
.to(att_feats.device))
logprob = self.model.generator(out[:, -1])
if sample_max:
sampleLogprobs, next_word = torch.max(logprob, dim = 1)
else:
if temperature == 1.0:
prob_prev = torch.exp(logprob.data) # fetch prev distribution: shape Nx(M+1)
else:
# scale logprobs by temperature
prob_prev = torch.exp(torch.div(logprob.data, temperature))
next_word = torch.multinomial(prob_prev, 1)
sampleLogprobs = logprobs.gather(1, next_word) # gather the logprobs at sampled positions
seq[:,i] = next_word
seqLogprobs[:,i] = sampleLogprobs
ys = torch.cat([ys, next_word.unsqueeze(1)], dim=1)
assert (seq*((seq_>0).long())==seq_).all(), 'seq doens\'t match'
assert (seqLogprobs*((seq_>0).float()) - seqLogprobs_*((seq_>0).float())).abs().max() < 1e-5, 'logprobs doens\'t match'
return seq, seqLogprobs
def _sample(self, fc_feats, att_feats, boxes, att_masks=None, opt={}):
sample_max = opt.get('sample_max', 1)
beam_size = opt.get('beam_size', 1)
temperature = opt.get('temperature', 1.0)
decoding_constraint = opt.get('decoding_constraint', 0)
if beam_size > 1:
return self._sample_beam(fc_feats, att_feats, boxes, att_masks, opt)
batch_size = att_feats.shape[0]
att_feats, boxes, seq, att_masks, seq_mask = self._prepare_feature(att_feats, att_masks, boxes)
state = None
memory = self.model.encode(att_feats, boxes, att_masks)
seq = att_feats.new_zeros((batch_size, self.seq_length), dtype=torch.long)
seqLogprobs = att_feats.new_zeros(batch_size, self.seq_length)
for t in range(self.seq_length + 1):
if t == 0: # input <bos>
it = fc_feats.new_zeros(batch_size, dtype=torch.long)
logprobs, state = self.get_logprobs_state(it, memory, att_masks, state)
if decoding_constraint and t > 0:
tmp = output.new_zeros(output.size(0), self.vocab_size + 1)
tmp.scatter_(1, seq[:,t-1].data.unsqueeze(1), float('-inf'))
logprobs = logprobs + tmp
# sample the next word
if t == self.seq_length: # skip if we achieve maximum length
break
if sample_max:
sampleLogprobs, it = torch.max(logprobs.data, 1)
it = it.view(-1).long()
else:
if temperature == 1.0:
prob_prev = torch.exp(logprobs.data) # fetch prev distribution: shape Nx(M+1)
else:
# scale logprobs by temperature
prob_prev = torch.exp(torch.div(logprobs.data, temperature))
it = torch.multinomial(prob_prev, 1)
sampleLogprobs = logprobs.gather(1, it) # gather the logprobs at sampled positions
it = it.view(-1).long() # and flatten indices for downstream processing
# stop when all finished
if t == 0:
unfinished = it > 0
else:
unfinished = unfinished * (it > 0)
it = it * unfinished.type_as(it)
seq[:,t] = it
seqLogprobs[:,t] = sampleLogprobs.view(-1)
# quit loop if all sequences have finished
if unfinished.sum() == 0:
break
return seq, seqLogprobs