forked from rheiland/PhysiCell_tools
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathscatter2x4.py
125 lines (104 loc) · 4.27 KB
/
scatter2x4.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
#
# Display scalar fields on a hexagonal mesh, using MATLAB formatted input files:
# mesh.mat and output_*.mat
#
import sys
import matplotlib.pyplot as plt
from matplotlib.colors import LinearSegmentedColormap
import scipy
from scipy import io
import numpy as np
print(len(sys.argv))
if (len(sys.argv) < 2):
print("Usage: " + sys.argv[0] + " output_suffix.mat")
sys.exit(0)
else:
out_mat_file = sys.argv[1]
fig, axes = plt.subplots(nrows=2, ncols=4, figsize=(14,6))
ax0, ax1, ax2, ax3, ax4, ax5, ax6, ax7 = axes.flatten()
print("----- mesh.mat ----")
d={}
scipy.io.loadmat("mesh",d)
m=d["mesh"]
print(m.shape)
x=m[1,:]
y=m[2,:]
print("X range=",x.min(),x.max())
print("Y range=",y.min(),y.max())
"""
fwrite( (char*) &( voxel_population_vectors[i].live_cell_counts.at(0) ) , sizeof(double) , 1 , fp );// Live tumor cells
fwrite( (char*) &( voxel_population_vectors[i].apoptotic_cell_counts.at(0) ) , sizeof(double) , 1 , fp ); // apoptotic tumor cells
fwrite( (char*) &( voxel_population_vectors[i].necrotic_cell_counts[0] ) , sizeof(double) , 1 , fp ); // necrotic tumor cells
fwrite( (char*) &( voxel_population_vectors[i].live_cell_counts.at(1) ) , sizeof(double) , 1 , fp ); // Vascular cells
fwrite( (char*) &( voxel_population_vectors[i].apoptotic_cell_counts.at(1) ) , sizeof(double) , 1 , fp ); // Vasculars - NOT BEING USED - don't visualize me unless you just need to. I would rather have a workign script that produces a blank animation/chart over nothing.
fwrite( (char*) &( voxel_population_vectors[i].necrotic_cell_counts[1] ) , sizeof(double) , 1 , fp ); // Vasular field - NOT BEING USED
fwrite( (char*) &( substrate_vectors[i].substrate_quantity.at(0) ) , sizeof(double) , 1 , fp ); // Oxygen
fwrite( (char*) &( substrate_vectors[i].substrate_quantity.at(1) ) , sizeof(double) , 1 , fp ); // Anigogenic Factor
"""
print("----- voxels (output*.mat) ----")
d2 = {}
scipy.io.loadmat(out_mat_file,d2)
v = d2["voxels_populations"]
print(v.shape)
print("range of Live=",v[0,:].min(),v[0,:].max())
print("range of Vascular=",v[3,:].min(),v[3,:].max())
print("range of v[5,]=",v[5,:].min(),v[5,:].max())
print("range of oxygen=",v[6,:].min(),v[6,:].max())
print("range of angiogenic=",v[7,:].min(),v[7,:].max())
live=v[0,:]
vasc=v[3,:]
o2=v[6,:]
angio=v[7,:]
#-----------------------
# Options for custom colormaps:
# https://matplotlib.org/examples/pylab_examples/custom_cmap.html
colors = [(0, 0, 1), (0, 1, 0), (1, 1, 0), (1, 0, 0)]
cmap_name = 'my_colors'
cm = LinearSegmentedColormap.from_list(cmap_name, colors, N=4) # N= # of discrete colors
#------ Oxygen ---------
marker_size = 120 # area of (hexagonal) glyphs used for all scatter plots
half_dist = 300
ax0.axis([-half_dist,half_dist, -half_dist,half_dist])
# https://matplotlib.org/api/markers_api.html
voxel_plot0 = ax0.scatter(x, y, marker='h', s=marker_size, c=o2, cmap=cm)
ax0.set_aspect('equal')
ax0.set_title('Oxygen')
fig.colorbar(voxel_plot0, ax=ax0)
#------- Angiogenic factor --------
ax1.axis([-half_dist,half_dist, -half_dist,half_dist])
angio_min = angio.min()
angio_max = angio.max()
angio_del = (angio_max - angio_min)/3.0
voxel_plot1 = ax1.scatter(x, y, marker='h', s=marker_size, c=angio, cmap=cm)
ax1.set_aspect('equal')
ax1.set_title('Angio')
fig.colorbar(voxel_plot1, ax=ax1)
#------- ?? --------
ax2.axis([-half_dist,half_dist, -half_dist,half_dist])
voxel_plot2 = ax2.scatter(x, y, marker='h', s=marker_size, c=vasc, cmap=cm)
ax2.set_aspect('equal')
ax2.set_title('Vascular')
fig.colorbar(voxel_plot2, ax=ax2)
#------- Live cells --------
ax3.axis([-half_dist,half_dist, -half_dist,half_dist])
voxel_plot3 = ax3.scatter(x, y, marker='h', s=marker_size, c=live, cmap=cm)
ax3.set_aspect('equal')
ax3.set_title('Live')
fig.colorbar(voxel_plot3, ax=ax3)
#=================================================
#------- Histograms --------
ax4.set_title('Histogram of O2')
n, bins, patches = ax4.hist(o2, 10)
ax5.set_title('Histogram of Angio')
n, bins, patches = ax5.hist(live, 10)
ax6.set_title('Histogram of Vascular')
n, bins, patches = ax6.hist(v[3,:], 10)
ax7.set_title('Histogram of Live')
n, bins, patches = ax7.hist(live, 10)
#-----------------
fig.tight_layout()
#plt.show()
png_file = out_mat_file[:-4]+".png"
print("---> " + png_file)
fig.savefig(png_file)
#fig.savefig(png_file, transparent=True)