-
Notifications
You must be signed in to change notification settings - Fork 2
/
utils_p.py
279 lines (222 loc) · 8.4 KB
/
utils_p.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
import math
import cv2
import torch
import numpy as np
from math import *
from scipy.special import iv
class AverageMeter(object):
#Computes and stores the average and current value
def __init__(self):
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
def get_angular_loss(vec1,vec2):
safe_v = 0.999999
illum_normalized1 = torch.nn.functional.normalize(vec1,dim=1)
# print(illum_normalized1)
illum_normalized2 = torch.nn.functional.normalize(vec2,dim=1)
# illum_normalized2 = vec2
# print(illum_normalized2)
dot = torch.sum(illum_normalized1*illum_normalized2,dim=1)
# print(dot)
dot = torch.clamp(dot, -safe_v, safe_v)
# print(dot)
angle = torch.acos(dot)*(180/math.pi)
# print(angle)
loss = torch.mean(angle)
return loss
def get_angular_loss_ang(vec1,vec2):
safe_v = 0.999999
# illum_normalized1 = torch.nn.functional.normalize(vec1,dim=1)
# print(illum_normalized1)
# illum_normalized2 = torch.nn.functional.normalize(vec2,dim=1)
# illum_normalized2 = vec2
# print(illum_normalized2)
dot = torch.sum(vec1*vec2,dim=1)
# print(dot)
dot = torch.clamp(dot, -safe_v, safe_v)
# print(dot)
angle = torch.acos(dot)*(180/math.pi)
# print(angle)
loss = torch.mean(angle)
return loss
def get_awb_pic(img,pred):
# pred = torch.sum(pred, (2))
print('pred_shape',pred.shape)
pred = torch.nn.functional.normalize(pred,dim=1)
pred = pred.detach().cpu().numpy()
pred = np.array(pred,'float32')
pred = pred.squeeze(0).transpose(1,0)
# pred = normalize(pred)
pred_s1 = cv2.resize(pred.reshape((16,16,3)),(256,256))
pred[:,0] = pred[:,0]/pred[:,1]
pred[:,2] = pred[:,2]/pred[:,1]
pred[:,1] = pred[:,1]/pred[:,1]
# print(pred.shape)
# print('img_min:',np.min(img),"img_max:",np.max(img))
img = np.clip(img,0,1)
# print(np.max(img))
# pred_s2 = pred.reshape(64,64,3)
pred_s2 = cv2.resize(pred.reshape((16,16,3)),(256,256))
img_wb = np.clip(img/pred_s2,0,1)**(1/2.2)*255
img_wb = np.uint8(img_wb)
# print(np.max(img_wb))
return img_wb,pred_s1
def get_awb_pic_single(img,pred,pred_map):
pred = torch.sum(pred, (2))
pred = torch.nn.functional.normalize(pred,dim=1)
pred = pred.squeeze(0)
pred = pred.detach().cpu().numpy()
pred = np.array(pred,'float32')
pred_pmap = pred*np.ones_like(pred_map)
# pmap_t = torch.from_numpy(pred_pmap.copy())
# pred_mapt
pred_map = pred_map/pred_pmap
weights = pred_map
# weights = pred_map/pred_pmap
# pred = normalize(pred)
pred = pred/pred[1]
# pred = pred.transpose(1,0)
# print(pred.shape)
# print('img_min:',np.min(img),"img_max:",np.max(img))
img = np.clip(img,0,1)
# print(np.max(img))
# pred = cv2.resize(pred.reshape(64,64,3),(256,256))
img_wb = np.clip(img/pred,0,1)**(1/2.2)*255
img_wb = np.uint8(img_wb)
# print(np.max(img_wb))
return img_wb,pred_map,weights
def get_gt_pic(img,pred):
pred = torch.nn.functional.normalize(pred,dim=1)
pred = pred.squeeze(0)
pred = pred.detach().cpu().numpy()
pred = np.array(pred,'float32')
pred = normalize(pred)
pred = pred/pred[1]
print(pred)
print('img_min:',np.min(img),"img_max:",np.max(img))
img = np.clip(img/np.max(img),0,1)
print(np.max(img))
img_wb = np.clip(img/pred,0,1)**(1/2.2)*255
img_wb = np.uint8(img_wb)
print(np.max(img_wb))
return img_wb
def correct_image_nolinear(img,ill):
#nolinear img, linear ill , return non-linear img
nonlinear_ill = torch.pow(ill,1.0/2.2)
correct = nonlinear_ill.unsqueeze(2).unsqueeze(3)*torch.sqrt(torch.Tensor([3])).cuda()
correc_img = torch.div(img,correct+1e-10)
img_max = torch.max(torch.max(torch.max(correc_img,dim=1)[0],dim=1)[0],dim=1)[0]+1e-10
img_max = img_max.unsqueeze(1).unsqueeze(1).unsqueeze(1)
img_normalize = torch.div(correc_img,img_max)
return img_normalize
def evaluate(errors):
errors = sorted(errors)
def g(f):
return np.percentile(errors,f*100)
median = g(0.5)
mean = np.mean(errors)
trimean = 0.25*(g(0.25)+2*g(0.5)+g(0.75))
bst25 = np.mean(errors[:int(0.25*len(errors))])
wst25 = np.mean(errors[int(0.75*len(errors)):])
pct95 = g(0.95)
return mean,median,trimean,bst25,wst25,pct95
def rotate_image(image, angle):
"""
Rotates an OpenCV 2 / NumPy image about it's centre by the given angle
(in degrees). The returned image will be large enough to hold the entire
new image, with a black background
"""
# Get the image size
# No that's not an error - NumPy stores image matricies backwards
image_size = (image.shape[1], image.shape[0])
image_center = tuple(np.array(image_size) / 2)
# Convert the OpenCV 3x2 rotation matrix to 3x3
rot_mat = np.vstack(
[cv2.getRotationMatrix2D(image_center, angle, 1.0), [0, 0, 1]])
rot_mat_notranslate = np.matrix(rot_mat[0:2, 0:2])
# Shorthand for below calcs
image_w2 = image_size[0] * 0.5
image_h2 = image_size[1] * 0.5
# Obtain the rotated coordinates of the image corners
rotated_coords = [
(np.array([-image_w2, image_h2]) * rot_mat_notranslate).A[0],
(np.array([image_w2, image_h2]) * rot_mat_notranslate).A[0],
(np.array([-image_w2, -image_h2]) * rot_mat_notranslate).A[0],
(np.array([image_w2, -image_h2]) * rot_mat_notranslate).A[0]
]
# Find the size of the new image
x_coords = [pt[0] for pt in rotated_coords]
x_pos = [x for x in x_coords if x > 0]
x_neg = [x for x in x_coords if x < 0]
y_coords = [pt[1] for pt in rotated_coords]
y_pos = [y for y in y_coords if y > 0]
y_neg = [y for y in y_coords if y < 0]
right_bound = max(x_pos)
left_bound = min(x_neg)
top_bound = max(y_pos)
bot_bound = min(y_neg)
new_w = int(abs(right_bound - left_bound))
new_h = int(abs(top_bound - bot_bound))
# We require a translation matrix to keep the image centred
trans_mat = np.matrix([[1, 0, int(new_w * 0.5 - image_w2)],
[0, 1, int(new_h * 0.5 - image_h2)], [0, 0, 1]])
# Compute the tranform for the combined rotation and translation
affine_mat = (np.matrix(trans_mat) * np.matrix(rot_mat))[0:2, :]
# Apply the transform
result = cv2.warpAffine(
image, affine_mat, (new_w, new_h), flags=cv2.INTER_LINEAR)
return result
def largest_rotated_rect(w, h, angle):
"""
Given a rectangle of size wxh that has been rotated by 'angle' (in
radians), computes the width and height of the largest possible
axis-aligned rectangle within the rotated rectangle.
Original JS code by 'Andri' and Magnus Hoff from Stack Overflow
Converted to Python by Aaron Snoswell
"""
quadrant = int(math.floor(angle / (math.pi / 2))) & 3
sign_alpha = angle if ((quadrant & 1) == 0) else math.pi - angle
alpha = (sign_alpha % math.pi + math.pi) % math.pi
bb_w = w * math.cos(alpha) + h * math.sin(alpha)
bb_h = w * math.sin(alpha) + h * math.cos(alpha)
gamma = math.atan2(bb_w, bb_w) if (w < h) else math.atan2(bb_w, bb_w)
delta = math.pi - alpha - gamma
length = h if (w < h) else w
d = length * math.cos(alpha)
a = d * math.sin(alpha) / math.sin(delta)
y = a * math.cos(gamma)
x = y * math.tan(gamma)
return (bb_w - 2 * x, bb_h - 2 * y)
def crop_around_center(image, width, height):
"""
Given a NumPy / OpenCV 2 image, crops it to the given width and height,
around it's centre point
"""
image_size = (image.shape[1], image.shape[0])
image_center = (int(image_size[0] * 0.5), int(image_size[1] * 0.5))
if (width > image_size[0]):
width = image_size[0]
if (height > image_size[1]):
height = image_size[1]
x1 = int(image_center[0] - width * 0.5)
x2 = int(image_center[0] + width * 0.5)
y1 = int(image_center[1] - height * 0.5)
y2 = int(image_center[1] + height * 0.5)
return image[y1:y2, x1:x2]
def rotate_and_crop(image, angle):
image_width, image_height = image.shape[:2]
image_rotated = rotate_image(image, angle)
image_rotated_cropped = crop_around_center(image_rotated,
*largest_rotated_rect(
image_width, image_height,
math.radians(angle)))
return image_rotated_cropped