-
Notifications
You must be signed in to change notification settings - Fork 399
/
Copy pathdataset_mvdiff.py
343 lines (264 loc) · 14.2 KB
/
dataset_mvdiff.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
import torch
import torch.nn.functional as F
import cv2
import numpy as np
import os
from glob import glob
from icecream import ic
from scipy.spatial.transform import Rotation as Rot
from scipy.spatial.transform import Slerp
import PIL.Image
from glob import glob
import pdb
def camNormal2worldNormal(rot_c2w, camNormal):
H,W,_ = camNormal.shape
normal_img = np.matmul(rot_c2w[None, :, :], camNormal.reshape(-1,3)[:, :, None]).reshape([H, W, 3])
return normal_img
def worldNormal2camNormal(rot_w2c, worldNormal):
H,W,_ = worldNormal.shape
normal_img = np.matmul(rot_w2c[None, :, :], worldNormal.reshape(-1,3)[:, :, None]).reshape([H, W, 3])
return normal_img
def trans_normal(normal, RT_w2c, RT_w2c_target):
normal_world = camNormal2worldNormal(np.linalg.inv(RT_w2c[:3,:3]), normal)
normal_target_cam = worldNormal2camNormal(RT_w2c_target[:3,:3], normal_world)
return normal_target_cam
def img2normal(img):
return (img/255.)*2-1
def normal2img(normal):
return np.uint8((normal*0.5+0.5)*255)
def norm_normalize(normal, dim=-1):
normal = normal/(np.linalg.norm(normal, axis=dim, keepdims=True)+1e-6)
return normal
def RT_opengl2opencv(RT):
# Build the coordinate transform matrix from world to computer vision camera
# R_world2cv = R_bcam2cv@R_world2bcam
# T_world2cv = R_bcam2cv@T_world2bcam
R = RT[:3, :3]
t = RT[:3, 3]
R_bcam2cv = np.asarray([[1, 0, 0], [0, -1, 0], [0, 0, -1]], np.float32)
R_world2cv = R_bcam2cv @ R
t_world2cv = R_bcam2cv @ t
RT = np.concatenate([R_world2cv,t_world2cv[:,None]],1)
return RT
def normal_opengl2opencv(normal):
H,W,C = np.shape(normal)
# normal_img = np.reshape(normal, (H*W,C))
R_bcam2cv = np.array([1, -1, -1], np.float32)
normal_cv = normal * R_bcam2cv[None, None, :]
print(np.shape(normal_cv))
return normal_cv
def inv_RT(RT):
RT_h = np.concatenate([RT, np.array([[0,0,0,1]])], axis=0)
RT_inv = np.linalg.inv(RT_h)
return RT_inv[:3, :]
def load_a_prediction(root_dir, test_object, imSize, view_types, load_color=False, cam_pose_dir=None, normal_system='front'):
all_images = []
all_normals = []
all_normals_world = []
all_masks = []
all_poses = []
all_w2cs = []
print(cam_pose_dir)
RT_front = np.loadtxt(glob(os.path.join(cam_pose_dir, '*_%s_RT.txt'%( 'front')))[0]) # world2cam matrix
RT_front_cv = RT_opengl2opencv(RT_front) # convert normal from opengl to opencv
for idx, view in enumerate(view_types):
print(os.path.join(root_dir,test_object))
normal_filepath = os.path.join(root_dir,test_object, 'normals_000_%s.png'%( view))
# Load key frame
if load_color: # use bgr
image =np.array(PIL.Image.open(normal_filepath.replace("normals", "rgb")).resize(imSize))[:, :, ::-1]
normal = np.array(PIL.Image.open(normal_filepath).resize(imSize))
mask = normal[:, :, 3]
normal = normal[:, :, :3]
RT = np.loadtxt(os.path.join(cam_pose_dir, '000_%s_RT.txt'%( view))) # world2cam matrix
normal = img2normal(normal)
normal[mask==0] = [0,0,0]
mask = mask> (0.5*255)
if load_color:
all_images.append(image)
all_masks.append(mask)
RT_cv = RT_opengl2opencv(RT) # convert normal from opengl to opencv
all_poses.append(inv_RT(RT_cv)) # cam2world
all_w2cs.append(RT_cv)
# whether to
normal_cam_cv = normal_opengl2opencv(normal)
if normal_system == 'front':
normal_world = camNormal2worldNormal(inv_RT(RT_front_cv)[:3, :3], normal_cam_cv)
elif normal_system == 'self':
normal_world = camNormal2worldNormal(inv_RT(RT_cv)[:3, :3], normal_cam_cv)
all_normals.append(normal_cam_cv)
all_normals_world.append(normal_world)
if not load_color:
all_images = [normal2img(x) for x in all_normals_world]
return np.stack(all_images), np.stack(all_masks), np.stack(all_normals), np.stack(all_normals_world), np.stack(all_poses), np.stack(all_w2cs)
class Dataset:
def __init__(self, conf):
super(Dataset, self).__init__()
print('Load data: Begin')
self.device = torch.device('cuda')
self.conf = conf
self.data_dir = conf.get_string('data_dir')
self.object_name = conf.get_string('object_name')
self.object_viewidx = conf.get_int('object_viewidx')
self.imSize = conf['imSize']
self.load_color = conf['load_color']
self.stage = conf['stage']
self.mtype = conf['mtype']
self.num_views = conf['num_views']
self.normal_system = conf['normal_system']
self.cam_pose_dir = "./models/fixed_poses/"
if self.num_views == 4:
view_types = ['front', 'right', 'back', 'left']
elif self.num_views == 5:
view_types = ['front', 'front_right', 'right', 'back', 'left']
elif self.num_views == 6:
view_types = ['front', 'front_right', 'right', 'back', 'left', 'front_left']
self.images_np, self.masks_np, self.normals_cam_np, \
self.normals_world_np ,self.pose_all_np, self.w2c_all_np = load_a_prediction(
self.data_dir, self.object_name, self.imSize, view_types, self.load_color,
self.cam_pose_dir, normal_system=self.normal_system)
self.n_images = self.images_np.shape[0]
self.images = torch.from_numpy(self.images_np.astype(np.float32)).cpu() / 255. # [n_images, H, W, 3]
self.masks = torch.from_numpy(self.masks_np.astype(np.float32)).cpu() # [n_images, H, W, 3]
self.normals_cam = torch.from_numpy(self.normals_cam_np.astype(np.float32)).cpu() # [n_images, H, W, 3]
self.normals_world = torch.from_numpy(self.normals_world_np.astype(np.float32)).cpu() # [n_images, H, W, 3]
self.pose_all = torch.from_numpy(self.pose_all_np.astype(np.float32)).cpu() # [n_images,3, 4] cam2world
# self.pose_all = torch.stack(self.pose_all).to(self.device) # [n_images, 4, 4]
self.H, self.W = self.images.shape[1], self.images.shape[2]
self.image_pixels = self.H * self.W
self.intrinsic = torch.from_numpy(np.array([
[self.W/2.0, 0, self.W / 2.0, 0],
[0, self.H/2.0, self.H/ 2.0, 0],
[0, 0, 1, 0],
[0, 0, 0, 1]
]).astype(np.float32))
self.intrinsics_all = torch.stack([self.intrinsic]*self.num_views, dim=0).cpu()
self.intrinsics_all_inv = torch.inverse(self.intrinsics_all).cpu() # [n_images, 4, 4]
object_bbox_min = np.array([-1.01, -1.01, -1.01, 1.0])
object_bbox_max = np.array([ 1.01, 1.01, 1.01, 1.0])
self.object_bbox_min = object_bbox_min[:3]
self.object_bbox_max = object_bbox_max[:3]
self.near = 0.2
self.far = 2.4
self.cos = torch.nn.CosineSimilarity(dim=1, eps=1e-6)
self.all_rays = self.prepare_all_rays()
print('Load data: End')
def gen_rays_at(self, img_idx, resolution_level=1):
"""
Generate rays at world space from one camera.
"""
l = resolution_level
tx = torch.linspace(0, self.W - 1, self.W // l)
ty = torch.linspace(0, self.H - 1, self.H // l)
pixels_x, pixels_y = torch.meshgrid(tx, ty)
q = torch.stack([(pixels_x/self.W-0.5)*2, (pixels_y/self.H-0.5)*2, torch.zeros_like(pixels_y)], dim=-1) # W, H, 3
v = torch.stack([torch.zeros_like(pixels_y), torch.zeros_like(pixels_y), torch.ones_like(pixels_y)], dim=-1) # W, H, 3
# orthogonal projection
rays_v = v / torch.linalg.norm(v, ord=2, dim=-1, keepdim=True) # W, H, 3
rays_v = torch.matmul(self.pose_all[img_idx, None, None, :3, :3].cuda(), rays_v[:, :, :, None].cuda()).squeeze() # W, H, 3
rays_o = torch.matmul(self.pose_all[img_idx, None, None, :3, :3].cuda(), q[:, :, :, None].cuda()).squeeze() # W, H, 3
rays_o = self.pose_all[img_idx, None, None, :3, 3].expand(rays_v.shape).cuda() + rays_o # W, H, 3
return rays_o.transpose(0, 1), rays_v.transpose(0, 1)
def gen_random_rays_at(self, img_idx, batch_size):
"""
Generate random rays at world space from one camera.
"""
pixels_x = torch.randint(low=0, high=self.W, size=[batch_size]).cpu()
pixels_y = torch.randint(low=0, high=self.H, size=[batch_size]).cpu()
color = self.images[img_idx][(pixels_y, pixels_x)] # batch_size, 3
mask = self.masks[img_idx][(pixels_y, pixels_x)] # batch_size, 3
normal = self.normals_world[img_idx][(pixels_y, pixels_x)] # batch_size, 3
q = torch.stack([(pixels_x / self.W-0.5)*2, (pixels_y / self.H-0.5)*2, torch.zeros_like(pixels_y)], dim=-1).float() # batch_size, 3
v = torch.stack([torch.zeros_like(pixels_y), torch.zeros_like(pixels_y), torch.ones_like(pixels_y)], dim=-1).float()
# q = torch.stack([pixels_x, pixels_y, torch.ones_like(pixels_y)], dim=-1).float() # bsz, 3
# q = torch.matmul(self.intrinsics_all_inv[img_idx, None, :3, :3], q[:, :, None]).squeeze() # bsz, 3
# q[:, 2] = 0
rays_v = v / torch.linalg.norm(v, ord=2, dim=-1, keepdim=True) # batch_size, 3
rays_v = torch.matmul(self.pose_all[img_idx, None, :3, :3], rays_v[:, :, None]).squeeze() # batch_size, 3
rays_o = torch.matmul(self.pose_all[img_idx, None, :3, :3], q[:, :, None]).squeeze() # batch_size, 3
rays_o = self.pose_all[img_idx, None, :3, 3].expand(rays_v.shape) + rays_o # batch_size, 3
return torch.cat([rays_o.cpu(), rays_v.cpu(), color, mask[:, None], normal], dim=-1).cuda() # batch_size, 10
def prepare_rays_a_view(self, img_idx):
"""
Generate random rays at world space from one camera.
"""
tx = torch.linspace(0, self.W - 1, self.W)
ty = torch.linspace(0, self.H - 1, self.H)
pixels_x, pixels_y = torch.meshgrid(tx, ty)
pixels_x = pixels_x.reshape(-1).long()
pixels_y = pixels_y.reshape(-1).long()
color = self.images[img_idx][(pixels_y, pixels_x)] # batch_size, 3
mask = self.masks[img_idx][(pixels_y, pixels_x)] # batch_size, 3
normal = self.normals_world[img_idx][(pixels_y, pixels_x)] # batch_size, 3
q = torch.stack([(pixels_x / self.W-0.5)*2, (pixels_y / self.H-0.5)*2, torch.zeros_like(pixels_y)], dim=-1).float() # batch_size, 3
v = torch.stack([torch.zeros_like(pixels_y), torch.zeros_like(pixels_y), torch.ones_like(pixels_y)], dim=-1).float()
rays_v = v / torch.linalg.norm(v, ord=2, dim=-1, keepdim=True) # batch_size, 3
rays_v = torch.matmul(self.pose_all[img_idx, None, :3, :3], rays_v[:, :, None]).squeeze() # batch_size, 3
rays_o = torch.matmul(self.pose_all[img_idx, None, :3, :3], q[:, :, None]).squeeze() # batch_size, 3
rays_o = self.pose_all[img_idx, None, :3, 3].expand(rays_v.shape) + rays_o # batch_size, 3
cosines = self.cos(rays_v, normal)
# pdb.set_trace()
return torch.cat([rays_o.cpu(), rays_v.cpu(), color, mask[:, None], normal, cosines[:, None]], dim=-1) # batch_size, 10
def prepare_all_rays(self,):
all_rays = []
for idx in range(self.n_images):
rays = self.prepare_rays_a_view(idx)
all_rays.append(rays)
all_rays = torch.concat(all_rays, dim=0)
return all_rays
def __getitem__(self, idx):
return self.all_rays[idx]
def __len__(self):
return self.all_rays.shape[0]
def gen_rays_between(self, idx_0, idx_1, ratio, resolution_level=1):
"""
Interpolate pose between two cameras.
"""
l = resolution_level
tx = torch.linspace(0, self.W - 1, self.W // l)
ty = torch.linspace(0, self.H - 1, self.H // l)
pixels_x, pixels_y = torch.meshgrid(tx, ty)
p = torch.stack([pixels_x, pixels_y, torch.ones_like(pixels_y)], dim=-1) # W, H, 3
p = torch.matmul(self.intrinsics_all_inv[0, None, None, :3, :3], p[:, :, :, None]).squeeze() # W, H, 3
rays_v = p / torch.linalg.norm(p, ord=2, dim=-1, keepdim=True) # W, H, 3
trans = self.pose_all[idx_0, :3, 3] * (1.0 - ratio) + self.pose_all[idx_1, :3, 3] * ratio
pose_0 = self.pose_all[idx_0].detach().cpu().numpy()
pose_1 = self.pose_all[idx_1].detach().cpu().numpy()
pose_0 = np.linalg.inv(pose_0)
pose_1 = np.linalg.inv(pose_1)
rot_0 = pose_0[:3, :3]
rot_1 = pose_1[:3, :3]
rots = Rot.from_matrix(np.stack([rot_0, rot_1]))
key_times = [0, 1]
slerp = Slerp(key_times, rots)
rot = slerp(ratio)
pose = np.diag([1.0, 1.0, 1.0, 1.0])
pose = pose.astype(np.float32)
pose[:3, :3] = rot.as_matrix()
pose[:3, 3] = ((1.0 - ratio) * pose_0 + ratio * pose_1)[:3, 3]
pose = np.linalg.inv(pose)
rot = torch.from_numpy(pose[:3, :3]).cuda()
trans = torch.from_numpy(pose[:3, 3]).cuda()
rays_v = torch.matmul(rot[None, None, :3, :3], rays_v[:, :, :, None]).squeeze() # W, H, 3
rays_o = trans[None, None, :3].expand(rays_v.shape) # W, H, 3
return rays_o.transpose(0, 1), rays_v.transpose(0, 1)
def near_far_from_sphere(self, rays_o, rays_d):
a = torch.sum(rays_d**2, dim=-1, keepdim=True)
b = 2.0 * torch.sum(rays_o * rays_d, dim=-1, keepdim=True)
mid = 0.5 * (-b) / a
near = mid - 1.0
far = mid + 1.0
return near, far
def get_near_far(self,):
return self.near, self.far
def image_at(self, idx, resolution_level):
img = self.images_np[idx]
return (cv2.resize(img, (self.W // resolution_level, self.H // resolution_level))).clip(0, 255)
def normal_cam_at(self, idx, resolution_level):
normal_cam = self.normals_cam_np[idx]
img = normal2img(normal_cam)
return (cv2.resize(img, (self.W // resolution_level, self.H // resolution_level))).clip(0, 255)
def mask_at(self, idx, resolution_level):
mask = np.uint8(self.masks_np[idx]*255)[:, :, None]
mask = np.concatenate([mask]*3, axis=-1)
return (cv2.resize(mask, (self.W // resolution_level, self.H // resolution_level))).clip(0, 255)