The processed data can be downloaded from HERE.
Run cat mmdet_xxx.tar.* > mmdet_xxx.tar
to merge the files.
Then set the variable data_root
in configs to the path of directory that contains the .pkl
files.
Step 1. Download ScanNet v2 data HERE. Link or move the scans/
folder to DSPDet3D/data/ScanNet-md40/
.
Step 2. Following mmdetection3d to process the data.
First extract point clouds and annotations by running:
cd DSPDet3D/data/ScanNet-md40
python batch_load_scannet_data.py
Then use tools/create_data.py
from mmdetection3d
to generate .pkl
files.
python DSPDet3D/tools/create_data.py scannet --root-path DSPDet3D/data/ScanNet-md40 --out-dir DSPDet3D/data/ScanNet-md40 --extra-tag scannet
Final folder structure:
ScanNet-md40
├── instance_mask/
├── points/
├── seg_info/
├── semantic_mask/
├── scannet_infos_train.pkl
├── scannet_infos_val.pkl
└── ...
Step 1. Download TO-SCENE dataset (TO_ScanNet version) from HERE. Download meta_data
from HERE and move it into TO-scannet/
.
The folder structure:
TO-scannet
├── meta_data/
├── train/
├── val/
└── test/
Link or move this folder to DSPDet3D/data/TO-SCENE-down/
.
Step 2. Process the data by running:
cd DSPDet3D/data/TO-SCENE-down
python to-scannet_converter.py
Final folder structure:
TO-SCENE-down
├── instance_mask/
├── points/
├── seg_info/
├── semantic_mask/
├── toscene_infos_train.pkl
├── toscene_infos_val.pkl
└── ...