-
Notifications
You must be signed in to change notification settings - Fork 0
/
homo_sm4_encrypt.cpp
415 lines (369 loc) · 14.7 KB
/
homo_sm4_encrypt.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
#include <iostream>
#include <helib/helib.h>
#include "originsm4.h"
void invertSingle(helib::Ctxt& ctxt) {
helib::Ctxt tmp1(ctxt); // tmp1 = data[i] = X
tmp1.frobeniusAutomorph(1); // tmp1 = X^2 after Z -> Z^2
ctxt.multiplyBy(tmp1); // data[i]= X^3
helib::Ctxt tmp2(ctxt); // tmp2 = X^3
tmp2.frobeniusAutomorph(2); // tmp2 = X^12 after Z -> Z^4
tmp1.multiplyBy(tmp2); // tmp1 = X^14
ctxt.multiplyBy(tmp2); // data[i]= X^15
ctxt.frobeniusAutomorph(4);// data[i]= X^240 after Z -> Z^16
ctxt.multiplyBy(tmp1); // data[i]= X^254
}
// the transformation X -> X^{-1} in GF(2^8)
void invert(std::vector<helib::Ctxt>& data)
{
for (long i=0; i<(long)data.size(); i++){ // compute X -> X^{254} on i'th ctxt
invertSingle(data[i]);
}
}
void buildAffine(std::vector<NTL::ZZX>& binMat, NTL::ZZX* binVec,
const unsigned char cc[],
const helib::EncryptedArrayDerived<helib::PA_GF2>& ea2)
{
std::vector<NTL::GF2X> scratch(8); // Specify the different columns
for (long j = 0; j < 8; j++) // convert from byte to degree-7 polynomial
GF2XFromBytes(scratch[j], &cc[j], 1);
// "building" the linearized-polynomial coefficients
std::vector<NTL::GF2X> C;
ea2.buildLinPolyCoeffs(C, scratch);
// "encoding" the coefficients
std::vector<NTL::ZZX>& zzxMat=binMat;
zzxMat.resize(8);
scratch.resize(ea2.size());
for (long j = 0; j < 8; j++) {
for (long i = 0; i < ea2.size(); i++) // set all slots to C[j]
scratch[i] = C[j];
ea2.encode(zzxMat[j], scratch); // encode these slots
}
if (binVec != NULL) {
NTL::GF2X cc8;
GF2XFromBytes(cc8, &cc[8], 1);
for (long i = 0; i < ea2.size(); i++) // set all slots to cc8
scratch[i] = cc8;
ea2.encode(*binVec, scratch); // encode these slots
}
}
void oneRound(helib::Ctxt& ctxt, helib::EncryptedArrayDerived<helib::PA_GF2>& ea2,
helib::SecKey& secret_key,
int round,
int slots,
const std::vector<helib::Ctxt>& expandEncKeys,
const std::vector<NTL::ZZX>& affMat1,
const std::vector<NTL::ZZX>& affMat2,
const NTL::ZZX& affVec1,
const NTL::ZZX& affVec2,
const std::vector<NTL::ZZX>& lccMat1,
const std::vector<NTL::ZZX>& lccMat2,
const std::vector<NTL::ZZX>& lccMat3,
const NTL::ZZX& encSelector,
const NTL::ZZX& encSelector1,
const NTL::ZZX& encSelector2,
const NTL::ZZX& encSelector3,
const NTL::ZZX& encSelector4,
const NTL::ZZX& encSelector5
) {
helib::Ctxt ctxt0(ctxt), ctxt4(ctxt), ctxt8(ctxt), ctxt12(ctxt);
ea2.rotate1D(ctxt4, 0, 4);
ea2.rotate1D(ctxt8, 0, 8);
ea2.rotate1D(ctxt12, 0, 12);
ctxt4.cleanUp();
ctxt8.cleanUp();
ctxt12.cleanUp();
ctxt0.addCtxt(ctxt4);
ctxt0.addCtxt(ctxt8);
// ctxt0.addCtxt(ctxt12);
int groupnum = slots/16;
ctxt0.multByConstant(encSelector);
ctxt0.addCtxt(expandEncKeys[round]);
applyLinPolyLL(ctxt0, affMat1, ea2.getDegree());
ctxt0.addConstant(affVec1);
invertSingle(ctxt0);
applyLinPolyLL(ctxt0, affMat2, ea2.getDegree());
ctxt0.addConstant(affVec2);
helib::Ctxt ctxtaf1(ctxt0), ctxtaf2(ctxt0), ctxtaf3(ctxt0);
applyLinPolyLL(ctxtaf1, lccMat1, ea2.getDegree());
applyLinPolyLL(ctxtaf2, lccMat2, ea2.getDegree());
applyLinPolyLL(ctxtaf3, lccMat3, ea2.getDegree());
helib::Ctxt ctxtaf2_15(ctxtaf2), ctxtaf2_14(ctxtaf2), ctxtaf2_2(ctxtaf2), ctxtaf2_3(ctxtaf2);
ea2.rotate1D(ctxtaf2_15, 0, 15);
ea2.rotate1D(ctxtaf2_14, 0, 14);
ea2.rotate1D(ctxtaf2_2, 0, 2);
ea2.rotate1D(ctxtaf2_3, 0, 3);
helib::Ctxt ctxtaf3_13(ctxtaf3), ctxtaf3_1(ctxtaf3);
ea2.rotate1D(ctxtaf3_13, 0, 13);
ea2.rotate1D(ctxtaf3_1, 0, 1);
ctxtaf2_15.cleanUp();
ctxtaf2_14.cleanUp();
ctxtaf2_2.cleanUp();
ctxtaf2_3.cleanUp();
ctxtaf3_13.cleanUp();
ctxtaf3_1.cleanUp();
helib::Ctxt ctxtaf1_1(ctxtaf1), ctxtaf1_2(ctxtaf1), ctxtaf1_3(ctxtaf1), ctxtaf1_4(ctxtaf1);
ctxtaf1_1.addCtxt(ctxtaf2_15);
ctxtaf1_1.addCtxt(ctxtaf2_14);
ctxtaf1_1.addCtxt(ctxtaf3_13);
ctxtaf1_2.addCtxt(ctxtaf3_1);
ctxtaf1_2.addCtxt(ctxtaf2_15);
ctxtaf1_2.addCtxt(ctxtaf2_14);
ctxtaf1_3.addCtxt(ctxtaf2_2);
ctxtaf1_3.addCtxt(ctxtaf3_1);
ctxtaf1_3.addCtxt(ctxtaf2_15);
ctxtaf1_4.addCtxt(ctxtaf2_3);
ctxtaf1_4.addCtxt(ctxtaf2_2);
ctxtaf1_4.addCtxt(ctxtaf3_1);
ctxtaf1_1.multByConstant(encSelector1);
ctxtaf1_2.multByConstant(encSelector2);
ctxtaf1_3.multByConstant(encSelector3);
ctxtaf1_4.multByConstant(encSelector4);
ctxtaf1_1.addCtxt(ctxtaf1_2);
ctxtaf1_1.addCtxt(ctxtaf1_3);
ctxtaf1_1.addCtxt(ctxtaf1_4);
ctxtaf1_1.addCtxt(ctxt12);
ctxtaf1_1.multByConstant(encSelector);
ea2.rotate1D(ctxt, 0, 12);
ctxt.cleanUp();
ctxt.multByConstant(encSelector5);
ctxt.addCtxt(ctxtaf1_1);
}
int main(int argc, char* argv[])
{
auto start = std::chrono::system_clock::now();
std::time_t start_time = std::chrono::system_clock::to_time_t(start);
std::cout << "##begin:" << std::ctime(&start_time) << std::endl;
long mValues[][14] = {
//{ p, phi(m), m, d, m1, m2, m3, g1, g2, g3,ord1,ord2,ord3, c_m}
{ 2, 184320, 266305, 24, 0, 0, 0, 177, 7, 2891, 16, 120, 4, 100}, //bits=3800, 30rounds, //bits=40000, 31.5 rounds //bits=4200, 32rounds, but securitylevel about 120.8
};
int cid = 0;
// Plaintext prime modulus
unsigned long p = mValues[cid][0];
// Cyclotomic polynomial - defines phi(m)
unsigned long m = mValues[cid][2];
// Hensel lifting (default = 1)
unsigned long r = 1;
// Number of bits of the modulus chain
// unsigned long bits = 2400;
// unsigned long bits = 3000;
unsigned long bits = 4100;
// Number of columns of Key-Switching matrix (default = 2 or 3)
unsigned long c = 3;
bool boot = false;
std::vector<long> gens;
std::vector<long> ords;
gens.push_back(mValues[cid][7]);
if (mValues[cid][8]>1) gens.push_back(mValues[cid][8]);
if (mValues[cid][9]>1) gens.push_back(mValues[cid][9]);
ords.push_back(mValues[cid][10]);
if (abs(mValues[cid][11])>1) ords.push_back(mValues[cid][11]);
if (abs(mValues[cid][12])>1) ords.push_back(mValues[cid][12]);
std::cout << "Initialising context object..." << std::endl;
// Initialize context
helib::Context context(m, p, r, gens, ords);
// context.bitsPerLevel = 23;
context.zMStar.set_cM(mValues[cid][13]/100.0);
// Modify the context, adding primes to the modulus chain
std::cout << "Building modulus chain..." << std::endl;
buildModChain(context, bits, c);
// Print the security level
std::cout << "Security: " << context.securityLevel() << std::endl;
// Secret key management
std::cout << "Creating secret key..." << std::endl;
// Create a secret key associated with the context
helib::SecKey secret_key(context);
// Generate the secret key
secret_key.GenSecKey(64);
std::cout << "Generating key-switching matrices..." << std::endl;
// Compute key-switching matrices that we need
// Add key-switching matrices for the automorphisms that we need
long ord = context.zMStar.OrderOf(0);
for (long i = 1; i < 16; i++) { // rotation along 1st dim by size i*ord/16
long exp = i*ord/16;
long val = NTL::PowerMod(context.zMStar.ZmStarGen(0), exp, m); // val = g^exp
// From s(X^val) to s(X)
secret_key.GenKeySWmatrix(1, val);
if (!context.zMStar.SameOrd(0))
// also from s(X^{1/val}) to s(X)
secret_key.GenKeySWmatrix(1, NTL::InvMod(val,m));
}
helib::addFrbMatrices(secret_key); // Also add Frobenius key-switching
helib::addSome1DMatrices(secret_key);
// Public key management
// Set the secret key (upcast: SecKey is a subclass of PubKey)
const helib::PubKey& public_key = secret_key;
// Get the EncryptedArray of the context
// const helib::EncryptedArray& ea = *(context.ea);
const uint8_t sm4PolyBytes[] = { 0xf5, 0x1 }; // X^8+X^7+X^6+X^5+X^4+X^2+1
const NTL::GF2X sm4Poly = NTL::GF2XFromBytes(sm4PolyBytes, 2);
helib::EncryptedArrayDerived<helib::PA_GF2> ea2(context, sm4Poly, context.alMod);
// Get the number of slot (phi(m))
long nslots = ea2.size();
int groupnum = nslots/16;
std::cout << "Number of slots: " << nslots << std::endl;
std::cout << "ea degree: " << ea2.getDegree() << std::endl;
std::cout << "group num:" << groupnum << std::endl;
// Create a vector of long with nslots elements
std::vector<NTL::GF2X> slots(ea2.size(), NTL::GF2X::zero());
unsigned char b[16] = { 0x01, 0x23, 0x45, 0x67, 0x89, 0xab, 0xcd, 0xef, 0xfe, 0xdc, 0xba, 0x98, 0x76, 0x54, 0x32, 0x10};
for (int i = 0; i < 16; i++) {
for (int j = 0; j < groupnum; j++) {
unsigned char tmpb = b[i];
NTL::GF2XFromBytes(slots[i*groupnum+j], &tmpb, 1);
}
}
NTL::ZZX encData;
ea2.encode(encData, slots);
helib::Ctxt ctxt(public_key);
public_key.Encrypt(ctxt, encData);
sm4_context octx;
unsigned char key[16] = { 0x01, 0x23, 0x45, 0x67, 0x89, 0xab, 0xcd, 0xef, 0xfe, 0xdc, 0xba, 0x98, 0x76, 0x54, 0x32, 0x10};
unsigned char out[16];
sm4_setkey_enc(&octx, key);
sm4_crypt_ecb(&octx, SM4_ENCRYPT, 16, b, out);
// const helib::PubKey& public_key = secret_key;
helib::Ctxt tmpCtxt(public_key);
std::vector<helib::Ctxt> expandEncKeys(32, tmpCtxt);
for (int i = 0; i < 32; i++) {
unsigned long curkey = octx.sk[i];
unsigned char curkeypart1 = (curkey >> 24) & 0xff;
unsigned char curkeypart2 = (curkey >> 16) & 0xff;
unsigned char curkeypart3 = (curkey >> 8) & 0xff;
unsigned char curkeypart4 = curkey & 0xff;
std::vector<NTL::GF2X> keySlots(ea2.size(), NTL::GF2X::zero());
for (int j = 12; j < 16; j++) {
for (int k = 0; k < groupnum; k++) {
if (j == 12) {
NTL::GF2XFromBytes(keySlots[j*groupnum+k], &curkeypart1, 1);
} else if (j == 13) {
NTL::GF2XFromBytes(keySlots[j*groupnum+k], &curkeypart2, 1);
} else if (j == 14) {
NTL::GF2XFromBytes(keySlots[j*groupnum+k], &curkeypart3, 1);
} else if (j == 15) {
NTL::GF2XFromBytes(keySlots[j*groupnum+k], &curkeypart4, 1);
}
}
}
NTL::ZZX curEncodeKey;
ea2.encode(curEncodeKey, keySlots);
public_key.Encrypt(expandEncKeys[i], curEncodeKey);
}
std::vector<NTL::GF2X> selectorSlots(ea2.size(), NTL::GF2X::zero());
std::vector<NTL::GF2X> selectorSlots1(ea2.size(), NTL::GF2X::zero());
std::vector<NTL::GF2X> selectorSlots2(ea2.size(), NTL::GF2X::zero());
std::vector<NTL::GF2X> selectorSlots3(ea2.size(), NTL::GF2X::zero());
std::vector<NTL::GF2X> selectorSlots4(ea2.size(), NTL::GF2X::zero());
std::vector<NTL::GF2X> selectorSlots5(ea2.size(), NTL::GF2X::zero());
std::vector<NTL::GF2X> selectorSlots6(ea2.size(), NTL::GF2X::zero());
std::vector<NTL::GF2X> selectorSlots7(ea2.size(), NTL::GF2X::zero());
std::vector<NTL::GF2X> selectorSlots8(ea2.size(), NTL::GF2X::zero());
unsigned char selectorchar[1] = { 0x01 };
// int groupnum = nslots/16;
for (int i = 12*groupnum; i < nslots; i++) {
NTL::GF2XFromBytes(selectorSlots[i], &selectorchar[0], 1);
}
for (int i = 12*groupnum; i < 13*groupnum; i++) {
NTL::GF2XFromBytes(selectorSlots1[i], &selectorchar[0], 1);
}
for (int i = 13*groupnum; i < 14*groupnum; i++) {
NTL::GF2XFromBytes(selectorSlots2[i], &selectorchar[0], 1);
}
for (int i = 14*groupnum; i < 15*groupnum; i++) {
NTL::GF2XFromBytes(selectorSlots3[i], &selectorchar[0], 1);
}
for (int i = 15*groupnum; i < nslots; i++) {
NTL::GF2XFromBytes(selectorSlots4[i], &selectorchar[0], 1);
}
for (int i = 0; i < 12*groupnum; i++) {
NTL::GF2XFromBytes(selectorSlots5[i], &selectorchar[0], 1);
}
for (int i = 0; i < 4*groupnum; i++) {
NTL::GF2XFromBytes(selectorSlots6[i], &selectorchar[0], 1);
}
for (int i = 4*groupnum; i < 8*groupnum; i++) {
NTL::GF2XFromBytes(selectorSlots7[i], &selectorchar[0], 1);
}
for (int i = 8*groupnum; i < 12*groupnum; i++) {
NTL::GF2XFromBytes(selectorSlots8[i], &selectorchar[0], 1);
}
NTL::ZZX encSelector, encSelector1, encSelector2, encSelector3, encSelector4, encSelector5,
encSelector6, encSelector7, encSelector8;
ea2.encode(encSelector, selectorSlots);
ea2.encode(encSelector1, selectorSlots1);
ea2.encode(encSelector2, selectorSlots2);
ea2.encode(encSelector3, selectorSlots3);
ea2.encode(encSelector4, selectorSlots4);
ea2.encode(encSelector5, selectorSlots5);
ea2.encode(encSelector6, selectorSlots6);
ea2.encode(encSelector7, selectorSlots7);
ea2.encode(encSelector8, selectorSlots8);
unsigned char cc[] = { 203, 151, 47, 94, 188, 121, 242, 229, 211};
unsigned char cc1[] = { 203, 151, 47, 94, 188, 121, 242, 229, 211};
std::vector<NTL::ZZX> affMat1, affMat2;
NTL::ZZX affVec1, affVec2;
buildAffine(affMat1, &affVec1, cc, ea2);
buildAffine(affMat2, &affVec2, cc1, ea2);
unsigned char lcc1[] = { 0x05, 0x0a, 0x14, 0x28, 0x50, 0xa0, 0x40, 0x80};
unsigned char lcc2[] = { 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x01, 0x02};
unsigned char lcc3[] = { 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x41, 0x82};
std::vector<NTL::ZZX> lccMat1, lccMat2, lccMat3;
buildAffine(lccMat1, NULL, lcc1, ea2);
buildAffine(lccMat2, NULL, lcc2, ea2);
buildAffine(lccMat3, NULL, lcc3, ea2);
for (int i = 0; i < 32; i++) {
std::cout << "##round " << i << ":" << std::endl;
oneRound(ctxt,
ea2,
secret_key,
i,
nslots,
expandEncKeys,
affMat1,
affMat2,
affVec1,
affVec2,
lccMat1,
lccMat2,
lccMat3,
encSelector,
encSelector1,
encSelector2,
encSelector3,
encSelector4,
encSelector5);
if (i == 31) {
//last round, reverse
std::cout << "##last round, reverse" << std::endl;
helib::Ctxt ctxt1(ctxt), ctxt2(ctxt), ctxt3(ctxt), ctxt4(ctxt);
ctxt1.multByConstant(encSelector);
ctxt2.multByConstant(encSelector6);
ctxt3.multByConstant(encSelector7);
ctxt4.multByConstant(encSelector8);
ea2.rotate1D(ctxt1, 0, 4);
ea2.rotate1D(ctxt2, 0, 12);
ea2.rotate1D(ctxt3, 0, 4);
ea2.rotate1D(ctxt4, 0, 12);
ctxt1.addCtxt(ctxt2);
ctxt1.addCtxt(ctxt3);
ctxt1.addCtxt(ctxt4);
NTL::ZZX new_plaintext_result1;
secret_key.Decrypt(new_plaintext_result1, ctxt1);
std::cout << "result:" << std::endl;
std::vector<NTL::GF2X> res2b;
ea2.decode(res2b, new_plaintext_result1);
for (int i = 0; i < res2b.size(); i++) {
unsigned char b;
NTL::BytesFromGF2X(&b, res2b[i], 1);
std::cout << std::hex << (int)b << " ";
if ((i+1) % groupnum == 0) {
std::cout << std::endl;
}
}
}
}
auto end = std::chrono::system_clock::now();
std::time_t end_time = std::chrono::system_clock::to_time_t(end);
std::cout << "##end:" << std::ctime(&end_time) << std::endl;
std::cout << "##from " << std::ctime(&start_time) << " to " << std::ctime(&end_time) << std::endl;
}