-
Notifications
You must be signed in to change notification settings - Fork 40
/
Copy pathdataset.py
138 lines (120 loc) · 5.12 KB
/
dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
# ========================================
# Author: Xueyou Luo
# Email: [email protected]
# Copyright: Eigen Tech @ 2018
# ========================================
import codecs
import json
from collections import namedtuple
import numpy as np
import tensorflow as tf
from utils import print_out
from thrid_utils import read_vocab
UNK_ID = 0
SOS_ID = 1
EOS_ID = 2
def _padding(tokens_list, max_len):
ret = np.zeros((len(tokens_list),max_len),np.int32)
for i,t in enumerate(tokens_list):
t = t + (max_len-len(t)) * [EOS_ID]
ret[i] = t
return ret
def _tokenize(content, w2i, max_tokens=1200, reverse=False, split=True):
def get_tokens(content):
tokens = content.strip().split()
ids = []
for t in tokens:
if t in w2i:
ids.append(w2i[t])
else:
for c in t:
ids.append(w2i.get(c,UNK_ID))
return ids
if split:
ids = get_tokens(content)
else:
ids = [w2i.get(t,UNK_ID) for t in content.strip().split()]
if reverse:
ids = list(reversed(ids))
tokens = [SOS_ID] + ids[:max_tokens] + [EOS_ID]
return tokens
class DataItem(namedtuple("DataItem",('content','length','labels','id'))):
pass
class DataSet(object):
def __init__(self, data_files, vocab_file, label_file, batch_size=32, reverse=False, split_word=True, max_len = 1200):
self.reverse = reverse
self.split_word = split_word
self.data_files = data_files
self.batch_size = batch_size
self.max_len = max_len
self.vocab, self.w2i = read_vocab(vocab_file)
self.i2w = {v:k for k,v in self.w2i.items()}
self.label_names, self.l2i = read_vocab(label_file)
self.i2l = {v:k for k,v in self.l2i.items()}
self.tag_l2i = {"1":0,"0":1,"-1":2,"-2":3}
self.tag_i2l = {v:k for k,v in self.tag_l2i.items()}
self._raw_data = []
self.items = []
self._preprocess()
def get_label(self, labels, l2i, normalize=False):
one_hot_labels = np.zeros(len(l2i),dtype=np.float32)
for n in labels:
if n:
one_hot_labels[l2i[n]] = 1
if normalize:
one_hot_labels = one_hot_labels / len(labels)
return one_hot_labels
def _preprocess(self):
print_out("# Start to preprocessing data...")
for fname in self.data_files:
print_out("# load data from %s ..." % fname)
for line in open(fname):
item = json.loads(line.strip())
content = item['content']
content = _tokenize(content, self.w2i, self.max_len, self.reverse, self.split_word)
item_labels = []
for label_name in self.label_names:
labels = [item[label_name]]
labels = self.get_label(labels,self.tag_l2i)
item_labels.append(labels)
self._raw_data.append(DataItem(content=content,labels=np.asarray(item_labels),length=len(content),id=int(item['id'])))
self.items.append(item)
self.num_batches = len(self._raw_data) // self.batch_size
self.data_size = len(self._raw_data)
print_out("# Got %d data items with %d batches" % (self.data_size, self.num_batches))
def _shuffle(self):
# code from https://github.com/fastai/fastai/blob/3f2079f7bc07ef84a750f6417f68b7b9fdc9525a/fastai/text.py#L125
idxs = np.random.permutation(self.data_size)
sz = self.batch_size * 50
ck_idx = [idxs[i:i+sz] for i in range(0, len(idxs), sz)]
sort_idx = np.concatenate([sorted(s, key=lambda x:self._raw_data[x].length, reverse=True) for s in ck_idx])
sz = self.batch_size
ck_idx = [sort_idx[i:i+sz] for i in range(0, len(sort_idx), sz)]
max_ck = np.argmax([self._raw_data[ck[0]].length for ck in ck_idx]) # find the chunk with the largest key,
ck_idx[0],ck_idx[max_ck] = ck_idx[max_ck],ck_idx[0] # then make sure it goes first.
sort_idx = np.concatenate(np.random.permutation(ck_idx[1:]))
sort_idx = np.concatenate((ck_idx[0], sort_idx))
return iter(sort_idx)
def process_batch(self, batch):
contents = [item.content for item in batch]
lengths = [item.length for item in batch]
contents = _padding(contents,max(lengths))
lengths = np.asarray(lengths)
targets = np.asarray([item.labels for item in batch])
ids = [item.id for item in batch]
return contents, lengths, targets, ids
def get_next(self, shuffle=True):
if shuffle:
idxs = self._shuffle()
else:
idxs = range(self.data_size)
batch = []
for i in idxs:
item = self._raw_data[i]
if len(batch) >= self.batch_size:
yield self.process_batch(batch)
batch = [item]
else:
batch.append(item)
if len(batch) > 0:
yield self.process_batch(batch)