forked from facebookresearch/deepcluster
-
Notifications
You must be signed in to change notification settings - Fork 2
/
eval_retrieval.py
481 lines (403 loc) · 18.8 KB
/
eval_retrieval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
# Copyright (c) 2017-present, Facebook, Inc.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
#
import argparse
import os
import pickle
import subprocess
import sys
from collections import OrderedDict
import numpy as np
import torch
import torchvision
from PIL import Image
from torch.autograd import Variable
from utils import load_model
class ImageHelper:
def __init__(self, S, L, transforms):
self.S = S
self.L = L
self.transforms = transforms
def load_and_prepare_image(self, fname, roi=None):
# Read image, get aspect ratio, and resize such as the largest side equals S
im = Image.open(fname)
im_size_hw = np.array((im.size[1], im.size[0]))
if self.S == -1:
ratio = 1.0
elif self.S == -2:
if np.max(im_size_hw) > 124:
ratio = 1024.0/np.max(im_size_hw)
else:
ratio = -1
else:
ratio = float(self.S)/np.max(im_size_hw)
new_size = tuple(np.round(im_size_hw * ratio).astype(np.int32))
im_resized = self.transforms(im.resize((new_size[1], new_size[0]), Image.BILINEAR))
# If there is a roi, adapt the roi to the new size and crop. Do not rescale
# the image once again
if roi is not None:
# ROI format is (xmin,ymin,xmax,ymax)
roi = np.round(roi * ratio).astype(np.int32)
im_resized = im_resized[:, roi[1]:roi[3], roi[0]:roi[2]]
return im_resized
def get_rmac_region_coordinates(self, H, W, L):
# Almost verbatim from Tolias et al Matlab implementation.
# Could be heavily pythonized, but really not worth it...
# Desired overlap of neighboring regions
ovr = 0.4
# Possible regions for the long dimension
steps = np.array((2, 3, 4, 5, 6, 7), dtype=np.float32)
w = np.minimum(H, W)
b = (np.maximum(H, W) - w) / (steps - 1)
# steps(idx) regions for long dimension. The +1 comes from Matlab
# 1-indexing...
idx = np.argmin(np.abs(((w**2 - w * b) / w**2) - ovr)) + 1
# Region overplus per dimension
Wd = 0
Hd = 0
if H < W:
Wd = idx
elif H > W:
Hd = idx
regions_xywh = []
for l in range(1, L+1):
wl = np.floor(2 * w / (l + 1))
wl2 = np.floor(wl / 2 - 1)
# Center coordinates
if l + Wd - 1 > 0:
b = (W - wl) / (l + Wd - 1)
else:
b = 0
cenW = np.floor(wl2 + b * np.arange(l - 1 + Wd + 1)) - wl2
# Center coordinates
if l + Hd - 1 > 0:
b = (H - wl) / (l + Hd - 1)
else:
b = 0
cenH = np.floor(wl2 + b * np.arange(l - 1 + Hd + 1)) - wl2
for i_ in cenH:
for j_ in cenW:
regions_xywh.append([j_, i_, wl, wl])
# Round the regions. Careful with the borders!
for i in range(len(regions_xywh)):
for j in range(4):
regions_xywh[i][j] = int(round(regions_xywh[i][j]))
if regions_xywh[i][0] + regions_xywh[i][2] > W:
regions_xywh[i][0] -= ((regions_xywh[i][0] + regions_xywh[i][2]) - W)
if regions_xywh[i][1] + regions_xywh[i][3] > H:
regions_xywh[i][1] -= ((regions_xywh[i][1] + regions_xywh[i][3]) - H)
return np.array(regions_xywh)
class PCA(object):
'''
Fits and applies PCA whitening
'''
def __init__(self, n_components):
self.n_components = n_components
def fit(self, X):
mean = X.mean(axis=0)
X -= mean
self.mean = Variable(torch.from_numpy(mean).view(1, -1))
Xcov = np.dot(X.T, X)
d, V = np.linalg.eigh(Xcov)
eps = d.max() * 1e-5
n_0 = (d < eps).sum()
if n_0 > 0:
print("%d / %d singular values are 0" % (n_0, d.size))
d[d < eps] = eps
totenergy = d.sum()
idx = np.argsort(d)[::-1][:self.n_components]
d = d[idx]
V = V[:, idx]
print("keeping %.2f %% of the energy" % (d.sum() / totenergy * 100.0))
D = np.diag(1. / np.sqrt(d))
self.DVt = Variable(torch.from_numpy(np.dot(D, V.T)))
def to_cuda(self):
self.mean = self.mean.cuda()
self.DVt = self.DVt.cuda()
def apply(self, X):
X = X - self.mean
num = torch.mm(self.DVt, X.transpose(0, 1)).transpose(0, 1)
# L2 normalize on output
return num
class Dataset:
def __init__(self, path, eval_binary_path):
self.path = path
self.eval_binary_path = eval_binary_path
# Some images from the Paris dataset are corrupted. Standard practice is
# to ignore them
self.blacklisted = set(["paris_louvre_000136",
"paris_louvre_000146",
"paris_moulinrouge_000422",
"paris_museedorsay_001059",
"paris_notredame_000188",
"paris_pantheon_000284",
"paris_pantheon_000960",
"paris_pantheon_000974",
"paris_pompidou_000195",
"paris_pompidou_000196",
"paris_pompidou_000201",
"paris_pompidou_000467",
"paris_pompidou_000640",
"paris_sacrecoeur_000299",
"paris_sacrecoeur_000330",
"paris_sacrecoeur_000353",
"paris_triomphe_000662",
"paris_triomphe_000833",
"paris_triomphe_000863",
"paris_triomphe_000867"])
self.load()
def load(self):
# Load the dataset GT
self.lab_root = '{0}/lab/'.format(self.path)
self.img_root = '{0}/jpg/'.format(self.path)
lab_filenames = np.sort(os.listdir(self.lab_root))
# Get the filenames without the extension
self.img_filenames = [e[:-4] for e in np.sort(os.listdir(self.img_root))
if e[:-4] not in self.blacklisted]
# Parse the label files. Some challenges as filenames do not correspond
# exactly to query names. Go through all the labels to:
# i) map names to filenames and vice versa
# ii) get the relevant regions of interest of the queries,
# iii) get the indexes of the dataset images that are queries
# iv) get the relevants / non-relevants list
self.relevants = {}
self.junk = {}
self.non_relevants = {}
self.filename_to_name = {}
self.name_to_filename = OrderedDict()
self.q_roi = {}
for e in lab_filenames:
if e.endswith('_query.txt'):
q_name = e[:-len('_query.txt')]
q_data = open("{0}/{1}".format(self.lab_root, e)).readline().split(" ")
q_filename = q_data[0][5:] if q_data[0].startswith('oxc1_') else q_data[0]
self.filename_to_name[q_filename] = q_name
self.name_to_filename[q_name] = q_filename
good = set([e.strip() for e in open("{0}/{1}_ok.txt".format(self.lab_root, q_name))])
good = good.union(set([e.strip() for e in open("{0}/{1}_good.txt".format(self.lab_root, q_name))]))
junk = set([e.strip() for e in open("{0}/{1}_junk.txt".format(self.lab_root, q_name))])
good_plus_junk = good.union(junk)
self.relevants[q_name] = [i for i in range(len(self.img_filenames))
if self.img_filenames[i] in good]
self.junk[q_name] = [i for i in range(len(self.img_filenames))
if self.img_filenames[i] in junk]
self.non_relevants[q_name] = [i for i in range(len(self.img_filenames))
if self.img_filenames[i] not in good_plus_junk]
self.q_roi[q_name] = np.array([float(q) for q in q_data[1:]], dtype=np.float32)
#np.array(map(float, q_data[1:]), dtype=np.float32)
self.q_names = self.name_to_filename.keys()
self.q_index = np.array([self.img_filenames.index(self.name_to_filename[qn])
for qn in self.q_names])
self.N_images = len(self.img_filenames)
self.N_queries = len(self.q_index)
def score(self, sim, temp_dir, eval_bin):
if not os.path.exists(temp_dir):
os.makedirs(temp_dir)
idx = np.argsort(sim, axis=1)[:, ::-1]
maps = [self.score_rnk_partial(i, idx[i], temp_dir, eval_bin)
for i in range(len(self.q_names))]
for i in range(len(self.q_names)):
print("{0}: {1:.2f}".format(self.q_names[i], 100 * maps[i]))
print(20 * "-")
print("Mean: {0:.2f}".format(100 * np.mean(maps)))
def score_rnk_partial(self, i, idx, temp_dir, eval_bin):
rnk = np.array(self.img_filenames)[idx]
with open("{0}/{1}.rnk".format(temp_dir, self.q_names[i]), 'w') as f:
f.write("\n".join(rnk)+"\n")
cmd = "{0} {1}{2} {3}/{4}.rnk".format(eval_bin, self.lab_root, self.q_names[i], temp_dir, self.q_names[i])
p = subprocess.Popen(cmd, shell=True, stdout=subprocess.PIPE, stderr=subprocess.STDOUT)
map_ = float(p.stdout.readlines()[0])
p.wait()
return map_
def get_filename(self, i):
return os.path.normpath("{0}/{1}.jpg".format(self.img_root,
self.img_filenames[i]))
def get_query_filename(self, i):
return os.path.normpath("{0}/{1}.jpg".format(self.img_root,
self.img_filenames[self.q_index[i]]))
def get_query_roi(self, i):
return self.q_roi[self.q_names[i]]
def ensure_directory_exists(fname):
dirname = fname[:fname.rfind('/')]
if not os.path.exists(dirname):
os.makedirs(dirname)
def normalize_L2(a, dim):
norms = torch.sqrt(torch.sum(a**2, dim=dim, keepdim=True))
return a / norms
def rmac(features, rmac_levels, pca=None):
nim, nc, xd, yd = features.size()
rmac_regions = image_helper.get_rmac_region_coordinates(xd, yd, rmac_levels)
rmac_regions = rmac_regions.astype(np.int)
nr = len(rmac_regions)
rmac_descriptors = []
for x0, y0, w, h in rmac_regions:
desc = features[:, :, y0:y0 + h, x0:x0 + w]
desc = torch.max(desc, 2, keepdim=True)[0]
desc = torch.max(desc, 3, keepdim=True)[0]
# insert an additional dimension for the cat to work
rmac_descriptors.append(desc.view(-1, 1, nc))
rmac_descriptors = torch.cat(rmac_descriptors, 1)
rmac_descriptors = normalize_L2(rmac_descriptors, 2)
if pca is None:
return rmac_descriptors
# PCA + whitening
npca = pca.n_components
rmac_descriptors = pca.apply(rmac_descriptors.view(nr * nim, nc))
rmac_descriptors = normalize_L2(rmac_descriptors, 1)
rmac_descriptors = rmac_descriptors.view(nim, nr, npca)
# Sum aggregation and L2-normalization
rmac_descriptors = torch.sum(rmac_descriptors, 1)
rmac_descriptors = normalize_L2(rmac_descriptors, 1)
return rmac_descriptors
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Evaluate Oxford / Paris')
parser.add_argument('--S', type=int, default=1024,
help='Resize larger side of image to S pixels (e.g. 800)')
parser.add_argument('--L', type=int, default=3,
help='Use L spatial levels (e.g. 3)')
parser.add_argument('--n_pca', type=int, default=512,
help='output dimension of PCA')
parser.add_argument('--model', type=str, default='pretrained',
help='Model from which RMAC is computed')
parser.add_argument('--dataset', type=str, required=True,
help='path to dataset')
parser.add_argument('--dataset_name', type=str, default='Oxford',
choices=['Oxford', 'Paris'], help='Dataset name')
parser.add_argument('--stage', type=str, default='extract_train',
choices=['extract_train', 'train_pca', 'db_features',
'q_features', 'eval'], help='what action to perform ')
parser.add_argument('--eval_binary', type=str, required=True,
help='Path to the compute_ap binary to evaluate Oxford / Paris')
parser.add_argument('--temp_dir', type=str, default='',
help='Path to a temporary directory to store features and scores')
parser.add_argument('--multires', dest='multires', action='store_true',
help='Enable multiresolution features')
parser.add_argument('--aqe', type=int, required=False,
help='Average query expansion with k neighbors')
parser.add_argument('--dbe', type=int, required=False,
help='Database expansion with k neighbors')
parser.set_defaults(multires=False)
args = parser.parse_args()
# Load the dataset and the image helper
print "Prepare the dataset from ", args.dataset
dataset = Dataset(args.dataset, args.eval_binary)
ensure_directory_exists(args.temp_dir + '/')
if args.stage in ('extract_train', 'db_features', 'q_features'):
if args.model == 'pretrained':
print("loading supervised pretrained VGG-16")
net = torchvision.models.vgg16_bn(pretrained=True)
else:
net = load_model(args.model)
transforms_comp = []
features_layers = list(net.features.children())[:-1]
net.features = torch.nn.Sequential(*features_layers)
transforms_comp.extend([
torchvision.transforms.ToTensor(),
torchvision.transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
])
transforms = torchvision.transforms.Compose(transforms_comp)
print("moving to GPU")
net.cuda()
net.eval()
print(" done")
print("initialize image helper")
image_helper = ImageHelper(args.S, args.L, transforms)
if args.stage == 'extract_train':
print("extract regions for training")
# extract at a single scale
S = args.S
image_helper.S = S
N_dataset = dataset.N_images
def process_image(i):
print(i),
sys.stdout.flush()
fname_out = "{0}/{1}_S{2}_L{3}_regions/{4}.npy".format(args.temp_dir, args.dataset_name, S, args.L, i)
ensure_directory_exists(fname_out)
I = image_helper.load_and_prepare_image(dataset.get_filename(i), roi=None)
v = torch.autograd.Variable(I.unsqueeze(0))
vc = v.cuda()
if hasattr(net, 'sobel') and net.sobel is not None:
vc = net.sobel(vc)
activation_map = net.features(vc).cpu()
rmac_descriptors = rmac(activation_map, args.L)
np.save(fname_out, rmac_descriptors.data.numpy())
map(process_image, range(dataset.N_images))
elif args.stage == 'train_pca':
# load training vectors
train_x = []
for i in range(10000):
fname_in = "{0}/{1}_S{2}_L{3}_regions/{4}.npy".format(args.temp_dir, args.dataset_name, args.S, args.L, i)
if not os.path.exists(fname_in):
break
x = np.load(fname_in)
train_x.append(x)
print("loaded %d train vectors" % len(train_x))
train_x = np.vstack([x.reshape(-1, x.shape[-1]) for x in train_x])
print(" size", train_x.shape)
pca = PCA(args.n_pca)
pca.fit(train_x)
pcaname = '%s/%s_S%d_PCA.pickle' % (args.temp_dir, args.dataset_name, args.S)
print("writing", pcaname)
pickle.dump(pca, open(pcaname, 'w'), -1)
elif args.stage == 'db_features' or args.stage == 'q_features':
# for tests on Paris, use Oxford PCA, and vice-versa
pcaname = '%s/%s_S%d_PCA.pickle' % (
args.temp_dir, 'Paris' if args.dataset_name == 'Oxford' else 'Oxford', args.S)
print("loading PCA from", pcaname)
pca = pickle.load(open(pcaname, 'r'))
print("Compute features")
# extract at a single scale
S = args.S
image_helper.S = S
N_dataset = dataset.N_images
def process_image(fname_in, roi, fname_out):
softmax = torch.nn.Softmax().cuda()
I = image_helper.load_and_prepare_image(fname_in, roi=roi)
v = torch.autograd.Variable(I.unsqueeze(0))
vc = v.cuda()
if hasattr(net, 'sobel') and net.sobel is not None:
vc = net.sobel(vc)
activation_map = net.features(vc).cpu()
descriptors = rmac(activation_map, args.L, pca=pca)
np.save(fname_out, descriptors.data.numpy())
if args.stage == 'db_features':
for i in range(dataset.N_images):
fname_in = dataset.get_filename(i)
fname_out = "{0}/{1}_S{2}_L{3}_db/{4}.npy".format(args.temp_dir, args.dataset_name, S, args.L, i)
ensure_directory_exists(fname_out)
print(i),
sys.stdout.flush()
process_image(fname_in, None, fname_out)
elif args.stage == 'q_features':
for i in range(dataset.N_queries):
fname_in = dataset.get_query_filename(i)
roi = dataset.get_query_roi(i)
fname_out = "{0}/{1}_S{2}_L{3}_q/{4}.npy".format(args.temp_dir, args.dataset_name, S, args.L, i)
ensure_directory_exists(fname_out)
print(i),
sys.stdout.flush()
process_image(fname_in, roi, fname_out)
elif args.stage == 'eval':
S = args.S
print("load query features")
features_queries = []
for i in range(dataset.N_queries):
fname = "{0}/{1}_S{2}_L{3}_q/{4}.npy".format(args.temp_dir, args.dataset_name, S, args.L, i)
features_queries.append(np.load(fname))
features_queries = np.vstack(features_queries)
print(" size", features_queries.shape)
print("load database features")
features_dataset = []
for i in range(dataset.N_images):
fname = "{0}/{1}_S{2}_L{3}_db/{4}.npy".format(args.temp_dir, args.dataset_name, S, args.L, i)
features_dataset.append(np.load(fname))
features_dataset = np.vstack(features_dataset)
print(" size", features_dataset.shape)
# Compute similarity
sim = features_queries.dot(features_dataset.T)
# Score
dataset.score(sim, args.temp_dir, args.eval_binary)