-
Notifications
You must be signed in to change notification settings - Fork 208
/
segmentation_twohead.py
442 lines (345 loc) · 16.5 KB
/
segmentation_twohead.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
from __future__ import print_function
import argparse
import itertools
import pickle
import sys
from datetime import datetime
import matplotlib
import numpy as np
import torch
matplotlib.use('Agg')
import matplotlib.pyplot as plt
import os
import code.archs as archs
from code.utils.cluster.general import config_to_str, get_opt, update_lr, nice
from code.utils.cluster.transforms import sobel_process
from code.utils.segmentation.segmentation_eval import \
segmentation_eval
from code.utils.segmentation.IID_losses import IID_segmentation_loss, \
IID_segmentation_loss_uncollapsed
from code.utils.segmentation.data import segmentation_create_dataloaders
from code.utils.segmentation.general import set_segmentation_input_channels
"""
Fully unsupervised clustering for segmentation ("IIC" = "IID").
Train and test script.
Network has two heads, for overclustering and final clustering.
"""
# Options ----------------------------------------------------------------------
parser = argparse.ArgumentParser()
parser.add_argument("--model_ind", type=int, required=True)
parser.add_argument("--arch", type=str, required=True)
parser.add_argument("--opt", type=str, default="Adam")
parser.add_argument("--mode", type=str, default="IID") # or IID+
parser.add_argument("--dataset", type=str, required=True)
parser.add_argument("--dataset_root", type=str, required=True)
parser.add_argument("--use_coarse_labels", default=False,
action="store_true") # COCO, Potsdam
parser.add_argument("--fine_to_coarse_dict", type=str, # COCO
default="/users/xuji/iid/iid_private/code/datasets"
"/segmentation/util/out/fine_to_coarse_dict.pickle")
parser.add_argument("--include_things_labels", default=False,
action="store_true") # COCO
parser.add_argument("--incl_animal_things", default=False,
action="store_true") # COCO
parser.add_argument("--coco_164k_curated_version", type=int, default=-1) # COCO
parser.add_argument("--gt_k", type=int, required=True)
parser.add_argument("--output_k_A", type=int, required=True)
parser.add_argument("--output_k_B", type=int, required=True)
parser.add_argument("--lamb_A", type=float, default=1.0)
parser.add_argument("--lamb_B", type=float, default=1.0)
parser.add_argument("--lr", type=float, default=0.01)
parser.add_argument("--lr_schedule", type=int, nargs="+", default=[])
parser.add_argument("--lr_mult", type=float, default=0.1)
parser.add_argument("--use_uncollapsed_loss", default=False,
action="store_true")
parser.add_argument("--mask_input", default=False, action="store_true")
parser.add_argument("--num_epochs", type=int, default=1000)
parser.add_argument("--batch_sz", type=int, required=True) # num pairs
parser.add_argument("--num_dataloaders", type=int, default=3)
parser.add_argument("--num_sub_heads", type=int, default=5)
parser.add_argument("--out_root", type=str,
default="/scratch/shared/slow/xuji/iid_private")
parser.add_argument("--restart", default=False, action="store_true")
parser.add_argument("--save_freq", type=int, default=5)
parser.add_argument("--test_code", default=False, action="store_true")
parser.add_argument("--head_B_first", default=False, action="store_true")
parser.add_argument("--batchnorm_track", default=False, action="store_true")
# data transforms
parser.add_argument("--no_sobel", default=False, action="store_true")
parser.add_argument("--include_rgb", default=False, action="store_true")
parser.add_argument("--pre_scale_all", default=False,
action="store_true") # new
parser.add_argument("--pre_scale_factor", type=float, default=0.5) #
parser.add_argument("--input_sz", type=int, default=161) # half of kazuto1011
parser.add_argument("--use_random_scale", default=False,
action="store_true") # new
parser.add_argument("--scale_min", type=float, default=0.6)
parser.add_argument("--scale_max", type=float, default=1.4)
# transforms we learn invariance to
parser.add_argument("--jitter_brightness", type=float, default=0.4)
parser.add_argument("--jitter_contrast", type=float, default=0.4)
parser.add_argument("--jitter_saturation", type=float, default=0.4)
parser.add_argument("--jitter_hue", type=float, default=0.125)
parser.add_argument("--flip_p", type=float, default=0.5)
parser.add_argument("--use_random_affine", default=False,
action="store_true") # new
parser.add_argument("--aff_min_rot", type=float, default=-30.) # degrees
parser.add_argument("--aff_max_rot", type=float, default=30.) # degrees
parser.add_argument("--aff_min_shear", type=float, default=-10.) # degrees
parser.add_argument("--aff_max_shear", type=float, default=10.) # degrees
parser.add_argument("--aff_min_scale", type=float, default=0.8)
parser.add_argument("--aff_max_scale", type=float, default=1.2)
# local spatial invariance. Dense means done convolutionally. Sparse means done
# once in data augmentation phase. These are not mutually exclusive
parser.add_argument("--half_T_side_dense", type=int, default=0)
parser.add_argument("--half_T_side_sparse_min", type=int, default=0)
parser.add_argument("--half_T_side_sparse_max", type=int, default=0)
config = parser.parse_args()
# Setup ------------------------------------------------------------------------
config.out_dir = os.path.join(config.out_root, str(config.model_ind))
config.dataloader_batch_sz = int(config.batch_sz / config.num_dataloaders)
assert (config.mode == "IID")
assert ("TwoHead" in config.arch)
assert (config.output_k_B == config.gt_k)
config.output_k = config.output_k_B # for eval code
assert (config.output_k_A >= config.gt_k) # sanity
config.use_doersch_datasets = False
config.eval_mode = "hung"
set_segmentation_input_channels(config)
if not os.path.exists(config.out_dir):
os.makedirs(config.out_dir)
if config.restart:
config_name = "config.pickle"
dict_name = "latest.pytorch"
given_config = config
reloaded_config_path = os.path.join(given_config.out_dir, config_name)
print("Loading restarting config from: %s" % reloaded_config_path)
with open(reloaded_config_path, "rb") as config_f:
config = pickle.load(config_f)
assert (config.model_ind == given_config.model_ind)
config.restart = True
# copy over new num_epochs and lr schedule
config.num_epochs = given_config.num_epochs
config.lr_schedule = given_config.lr_schedule
else:
print("Given config: %s" % config_to_str(config))
# Model ------------------------------------------------------
def train():
dataloaders_head_A, mapping_assignment_dataloader, mapping_test_dataloader = \
segmentation_create_dataloaders(config)
dataloaders_head_B = dataloaders_head_A # unlike for clustering datasets
net = archs.__dict__[config.arch](config)
if config.restart:
dict = torch.load(os.path.join(config.out_dir, dict_name),
map_location=lambda storage, loc: storage)
net.load_state_dict(dict["net"])
net.cuda()
net = torch.nn.DataParallel(net)
net.train()
optimiser = get_opt(config.opt)(net.module.parameters(), lr=config.lr)
if config.restart:
optimiser.load_state_dict(dict["optimiser"])
heads = ["A", "B"]
if hasattr(config, "head_B_first") and config.head_B_first:
heads = ["B", "A"]
# Results
# ----------------------------------------------------------------------
if config.restart:
next_epoch = config.last_epoch + 1
print("starting from epoch %d" % next_epoch)
config.epoch_acc = config.epoch_acc[:next_epoch] # in case we overshot
config.epoch_avg_subhead_acc = config.epoch_avg_subhead_acc[:next_epoch]
config.epoch_stats = config.epoch_stats[:next_epoch]
config.epoch_loss_head_A = config.epoch_loss_head_A[:(next_epoch - 1)]
config.epoch_loss_no_lamb_head_A = config.epoch_loss_no_lamb_head_A[
:(next_epoch - 1)]
config.epoch_loss_head_B = config.epoch_loss_head_B[:(next_epoch - 1)]
config.epoch_loss_no_lamb_head_B = config.epoch_loss_no_lamb_head_B[
:(next_epoch - 1)]
else:
config.epoch_acc = []
config.epoch_avg_subhead_acc = []
config.epoch_stats = []
config.epoch_loss_head_A = []
config.epoch_loss_no_lamb_head_A = []
config.epoch_loss_head_B = []
config.epoch_loss_no_lamb_head_B = []
_ = segmentation_eval(config, net,
mapping_assignment_dataloader=mapping_assignment_dataloader,
mapping_test_dataloader=mapping_test_dataloader,
sobel=(not config.no_sobel),
using_IR=config.using_IR)
print(
"Pre: time %s: \n %s" % (datetime.now(), nice(config.epoch_stats[-1])))
sys.stdout.flush()
next_epoch = 1
fig, axarr = plt.subplots(6, sharex=False, figsize=(20, 20))
if not config.use_uncollapsed_loss:
print("using condensed loss (default)")
loss_fn = IID_segmentation_loss
else:
print("using uncollapsed loss!")
loss_fn = IID_segmentation_loss_uncollapsed
# Train
# ------------------------------------------------------------------------
for e_i in xrange(next_epoch, config.num_epochs):
print("Starting e_i: %d %s" % (e_i, datetime.now()))
sys.stdout.flush()
if e_i in config.lr_schedule:
optimiser = update_lr(optimiser, lr_mult=config.lr_mult)
for head_i in range(2):
head = heads[head_i]
if head == "A":
dataloaders = dataloaders_head_A
epoch_loss = config.epoch_loss_head_A
epoch_loss_no_lamb = config.epoch_loss_no_lamb_head_A
lamb = config.lamb_A
elif head == "B":
dataloaders = dataloaders_head_B
epoch_loss = config.epoch_loss_head_B
epoch_loss_no_lamb = config.epoch_loss_no_lamb_head_B
lamb = config.lamb_B
iterators = (d for d in dataloaders)
b_i = 0
avg_loss = 0. # over heads and head_epochs (and sub_heads)
avg_loss_no_lamb = 0.
avg_loss_count = 0
for tup in itertools.izip(*iterators):
net.module.zero_grad()
if not config.no_sobel:
pre_channels = config.in_channels - 1
else:
pre_channels = config.in_channels
all_img1 = torch.zeros(config.batch_sz, pre_channels,
config.input_sz, config.input_sz).to(
torch.float32).cuda()
all_img2 = torch.zeros(config.batch_sz, pre_channels,
config.input_sz, config.input_sz).to(
torch.float32).cuda()
all_affine2_to_1 = torch.zeros(config.batch_sz, 2, 3).to(
torch.float32).cuda()
all_mask_img1 = torch.zeros(config.batch_sz, config.input_sz,
config.input_sz).to(torch.float32).cuda()
curr_batch_sz = tup[0][0].shape[0]
for d_i in xrange(config.num_dataloaders):
img1, img2, affine2_to_1, mask_img1 = tup[d_i]
assert (img1.shape[0] == curr_batch_sz)
actual_batch_start = d_i * curr_batch_sz
actual_batch_end = actual_batch_start + curr_batch_sz
all_img1[actual_batch_start:actual_batch_end, :, :, :] = img1
all_img2[actual_batch_start:actual_batch_end, :, :, :] = img2
all_affine2_to_1[actual_batch_start:actual_batch_end, :,
:] = affine2_to_1
all_mask_img1[actual_batch_start:actual_batch_end, :, :] = mask_img1
if not (curr_batch_sz == config.dataloader_batch_sz) and (
e_i == next_epoch):
print("last batch sz %d" % curr_batch_sz)
curr_total_batch_sz = curr_batch_sz * config.num_dataloaders # times 2
all_img1 = all_img1[:curr_total_batch_sz, :, :, :]
all_img2 = all_img2[:curr_total_batch_sz, :, :, :]
all_affine2_to_1 = all_affine2_to_1[:curr_total_batch_sz, :, :]
all_mask_img1 = all_mask_img1[:curr_total_batch_sz, :, :]
if (not config.no_sobel):
all_img1 = sobel_process(all_img1, config.include_rgb,
using_IR=config.using_IR)
all_img2 = sobel_process(all_img2, config.include_rgb,
using_IR=config.using_IR)
x1_outs = net(all_img1, head=head)
x2_outs = net(all_img2, head=head)
avg_loss_batch = None # avg over the heads
avg_loss_no_lamb_batch = None
for i in xrange(config.num_sub_heads):
loss, loss_no_lamb = loss_fn(x1_outs[i],
x2_outs[i],
all_affine2_to_1=all_affine2_to_1,
all_mask_img1=all_mask_img1,
lamb=lamb,
half_T_side_dense=config.half_T_side_dense,
half_T_side_sparse_min=config.half_T_side_sparse_min,
half_T_side_sparse_max=config.half_T_side_sparse_max)
if avg_loss_batch is None:
avg_loss_batch = loss
avg_loss_no_lamb_batch = loss_no_lamb
else:
avg_loss_batch += loss
avg_loss_no_lamb_batch += loss_no_lamb
avg_loss_batch /= config.num_sub_heads
avg_loss_no_lamb_batch /= config.num_sub_heads
if ((b_i % 100) == 0) or (e_i == next_epoch):
print(
"Model ind %d epoch %d head %s batch: %d avg loss %f avg loss no "
"lamb %f "
"time %s" % \
(config.model_ind, e_i, head, b_i, avg_loss_batch.item(),
avg_loss_no_lamb_batch.item(), datetime.now()))
sys.stdout.flush()
if not np.isfinite(avg_loss_batch.item()):
print("Loss is not finite... %s:" % str(avg_loss_batch))
exit(1)
avg_loss += avg_loss_batch.item()
avg_loss_no_lamb += avg_loss_no_lamb_batch.item()
avg_loss_count += 1
avg_loss_batch.backward()
optimiser.step()
torch.cuda.empty_cache()
b_i += 1
if b_i == 2 and config.test_code:
break
avg_loss = float(avg_loss / avg_loss_count)
avg_loss_no_lamb = float(avg_loss_no_lamb / avg_loss_count)
epoch_loss.append(avg_loss)
epoch_loss_no_lamb.append(avg_loss_no_lamb)
# Eval
# -----------------------------------------------------------------------
is_best = segmentation_eval(config, net,
mapping_assignment_dataloader=mapping_assignment_dataloader,
mapping_test_dataloader=mapping_test_dataloader,
sobel=(
not config.no_sobel),
using_IR=config.using_IR)
print(
"Pre: time %s: \n %s" % (datetime.now(), nice(config.epoch_stats[-1])))
sys.stdout.flush()
axarr[0].clear()
axarr[0].plot(config.epoch_acc)
axarr[0].set_title("acc (best), top: %f" % max(config.epoch_acc))
axarr[1].clear()
axarr[1].plot(config.epoch_avg_subhead_acc)
axarr[1].set_title("acc (avg), top: %f" % max(config.epoch_avg_subhead_acc))
axarr[2].clear()
axarr[2].plot(config.epoch_loss_head_A)
axarr[2].set_title("Loss head A")
axarr[3].clear()
axarr[3].plot(config.epoch_loss_no_lamb_head_A)
axarr[3].set_title("Loss no lamb head A")
axarr[4].clear()
axarr[4].plot(config.epoch_loss_head_B)
axarr[4].set_title("Loss head B")
axarr[5].clear()
axarr[5].plot(config.epoch_loss_no_lamb_head_B)
axarr[5].set_title("Loss no lamb head B")
fig.canvas.draw_idle()
fig.savefig(os.path.join(config.out_dir, "plots.png"))
if is_best or (e_i % config.save_freq == 0):
net.module.cpu()
save_dict = {"net": net.module.state_dict(),
"optimiser": optimiser.state_dict()}
if e_i % config.save_freq == 0:
torch.save(save_dict, os.path.join(config.out_dir, "latest.pytorch"))
config.last_epoch = e_i # for last saved version
if is_best:
torch.save(save_dict, os.path.join(config.out_dir, "best.pytorch"))
with open(os.path.join(config.out_dir, "best_config.pickle"),
'wb') as outfile:
pickle.dump(config, outfile)
with open(os.path.join(config.out_dir, "best_config.txt"),
"w") as text_file:
text_file.write("%s" % config)
net.module.cuda()
with open(os.path.join(config.out_dir, "config.pickle"), 'wb') as outfile:
pickle.dump(config, outfile)
with open(os.path.join(config.out_dir, "config.txt"), "w") as text_file:
text_file.write("%s" % config)
if config.test_code:
exit(0)
train()