-
Notifications
You must be signed in to change notification settings - Fork 12
/
opts.py
209 lines (168 loc) · 7.07 KB
/
opts.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
# ------------------------------------------------------------------------
# TadTR: End-to-end Temporal Action Detection with Transformer
# Copyright (c) 2021 - 2022. Xiaolong Liu.
# ------------------------------------------------------------------------
import argparse
from easydict import EasyDict
import yaml
def str2bool(x):
if x.lower() in ['true', 't', '1', 'y']:
return True
else:
return False
def get_args_parser():
parser = argparse.ArgumentParser('TadTR', add_help=False)
parser.add_argument('--cfg', type=str, help='the config file to use')
parser.add_argument('--device', default='cuda',
help='device to use for training / testing')
parser.add_argument('--seed', default=42, type=int)
parser.add_argument('--resume', default='', help='resume from checkpoint')
parser.add_argument('--eval', action='store_true', help='perform testing')
parser.add_argument('--num_workers', default=2, type=int, help='number of dataloader workers')
# Multi-GPU training
# We support both DataParallel and Distributed DataParallel (DDP)
parser.add_argument('--multi_gpu', action='store_true', help='use nn.DataParallel')
parser.add_argument('--world_size', default=1, type=int,
help='number of distributed processes')
parser.add_argument('--dist_url', default='env://',
help='url used to set up distributed training')
# Other options
parser.add_argument('opt', nargs=argparse.REMAINDER,
help='Command arguments that override configs')
return parser
cfg = EasyDict()
# ---- Basic option ----
# whether to enable tensorboard
cfg.tensorboard = False
# Disable CUDA extensions so that we can run the model on CPU
cfg.disable_cuda = False
# The backend of deformable attention, pytorch or CUDA
cfg.dfm_att_backend = 'pytorch'
# path where to save, empty for no saving
cfg.output_dir = ''
# # ------ Data options ------
cfg.dataset_name = 'thumos14'
# Use feature input or raw image input (jointly train the video encoder and the detection head). Choices: {feature, image}
cfg.input_type = 'feature'
# Which kind of feature to use. e.g. i3d, tsn.
cfg.feature = 'i3d2s'
# dimension (channels) of the video feature
cfg.feature_dim = 2048
# Perform binary detection (proposal generation) only
cfg.binary = False
# Testing on Which subset 'val' or 'test' (For Anet and HACS). Note that we rename the training/validation/testing subsets for all datasets. For example, the validation subset used for training on THUMOS14 is renamed as 'train' subset.
cfg.test_set = 'val'
# whether to crop video into windows (A window is also called a slice in this codebase). Required for THUMOS14
cfg.online_slice = False
# length of video slices. For feature input, the length is for feature sequence. For video input, the length is for frame sequence.
cfg.slice_len = None
# overlap ratio (=overlap_length/slice_length) between adjacent slices during training
cfg.slice_overlap = 0
# overlap ratio between adjacent slices during inference
cfg.test_slice_overlap = 0
# ---- Model option --------
# Name of the convolutional backbone to use. If we use video features as input, backbone should be 'none'
cfg.backbone = 'none'
# whether to use position embedding
cfg.use_pos_embed = True
# Type of positional embedding to use on top of the video features. Only support sine embedding.
cfg.position_embedding = "sine"
# Number of encoding layers in the transformer
cfg.enc_layers = 2
# Number of decoding layers in the transformer
cfg.dec_layers = 4
# Intermediate size of the feedforward layers in the transformer blocks
cfg.dim_feedforward = 2048
# Size of the embeddings (dimension of the transformer)
cfg.hidden_dim = 256
# Dropout applied in the transformer
cfg.dropout = 0.1
# Number of attention heads inside the transformer's attentions
cfg.nheads = 8
# Number of sampled points per head for deformable attention in the encoder
cfg.enc_n_points = 4
# Number of sampled points per head for deformable attention in the decoder
cfg.dec_n_points = 4
# Number of action queries
cfg.num_queries = 30
# Transformer activation type, relu|leaky_relu|gelu
cfg.activation = 'relu'
# Whether to enable segment refinement mechanism
cfg.seg_refine = True
# Whether to enable actionness regression head
cfg.act_reg = True
# whether to disable self-attention between action queries
cfg.disable_query_self_att = False
# ----- Loss and matcher setting -------
# Enable auxiliary decoding losses (loss at each layer)
cfg.aux_loss = True
# Loss weight
cfg.act_loss_coef = 4
cfg.cls_loss_coef = 2
cfg.seg_loss_coef = 5
cfg.iou_loss_coef = 2
# Relative classification weight of the no-action class
cfg.eos_coef = 0.1
# For focal loss
cfg.focal_alpha = 0.25
# Set cost weight
cfg.set_cost_class = 6 # Class coefficient
cfg.set_cost_seg = 5 # Segment L1 coefficient
cfg.set_cost_iou = 2 # Segment IoU coefficient
# ----- Training option -------
# base learning rate. If you set lr in yaml file, don't use this format, use 0.0002 instead
cfg.lr = 2e-4
# Valid only when the input is video frames
# specify the name pattern of the backbone layers.
cfg.lr_backbone_names = ['backbone']
# learning rate of backbone layers
cfg.lr_backbone = 1e-5
# special linear projection layers that need to use smaller lr
cfg.lr_linear_proj_names = ['reference_points', 'sampling_offsets']
cfg.lr_linear_proj_mult = 0.1
# which optimizer to use, choose from ['AdamW', 'Adam', 'SGD']
cfg.optimizer = 'AdamW'
cfg.batch_size = 16
cfg.weight_decay = 1e-4
# gradient clipping max norm
cfg.clip_max_norm = 0.1
# maximum number of training epochs
cfg.epochs = 16
# when to decay lr
cfg.lr_step = [14]
# save checkpoint every N epochs. Set it to a small value if you want to save intermediate models
cfg.ckpt_interval = 10
# update parameters every N forward-backward passes. N=1 (default)
cfg.iter_size = 1
# test model every N epochs. N=1 (default)
cfg.test_interval = 1
# ----- Postproc option -------
# How to rank the predicted instances.
# 1: for each query, generate a instance for each class; then pick top-scored instance from the whole set
# 2: pick top classes for each query
cfg.postproc_rank = 1
# for each query, pick top k classes; keep all queries
# this setting is useful for debug
cfg.postproc_cls_topk = 1
# for each video, pick topk detections
cfg.postproc_ins_topk = 100
# IoU threshold for NMS. Note that NMS is not necessary.
cfg.nms_thr = 0.4
def update_cfg_with_args(cfg, arg_list):
from ast import literal_eval
for i in range(0, len(arg_list), 2):
cur_entry = cfg
key_parts = arg_list[i].split('.')
for k in key_parts[:-1]:
cur_entry = cur_entry[k]
node = key_parts[-1]
try:
cur_entry[node] = literal_eval(arg_list[i+1])
except:
# print(f'literal_eval({arg_list[i+1]}) failed, directly take the value')
cur_entry[node] = arg_list[i+1]
def update_cfg_from_file(cfg, cfg_path):
import os
assert os.path.exists(cfg_path), 'cfg_path is invalid'
cfg_from_file = yaml.load(open(cfg_path), yaml.FullLoader)
cfg.update(cfg_from_file)