-
Notifications
You must be signed in to change notification settings - Fork 12
/
engine.py
163 lines (132 loc) · 5.91 KB
/
engine.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
# ------------------------------------------------------------------------
# TadTR: End-to-end Temporal Action Detection with Transformer
# ------------------------------------------------------------------------
# Modified from DETR (https://github.com/facebookresearch/detr)
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
# ------------------------------------------------------------------------
"""
Train and eval functions used in main.py
"""
import math
import os.path as osp
import sys
from typing import Iterable
import tqdm
import logging
import torch
import util.misc as utils
from datasets.tad_eval import TADEvaluator
import pickle
def train_one_epoch(model: torch.nn.Module, criterion: torch.nn.Module,
data_loader: Iterable, optimizer: torch.optim.Optimizer,
device: torch.device, epoch: int, cfg, max_norm: float = 0):
model.train()
criterion.train()
metric_logger = utils.MetricLogger(delimiter=" ")
metric_logger.add_meter('lr', utils.SmoothedValue(
window_size=1, fmt='{value:.6f}'))
header = 'Epoch: [{}]'.format(epoch)
print_freq = 20
cnt = 0
for samples, targets in metric_logger.log_every(data_loader, print_freq, header):
samples = samples.to(device)
targets = [{k: v.to(device) if k in ['segments', 'labels']
else v for k, v in t.items()} for t in targets]
outputs = model((samples.tensors, samples.mask))
loss_dict = criterion(outputs, targets)
weight_dict = criterion.weight_dict
losses = sum(loss_dict[k] * weight_dict[k]
for k in loss_dict.keys() if k in weight_dict)
# reduce losses over all GPUs for logging purposes
loss_dict_reduced = utils.reduce_dict(loss_dict)
# loss of each type
loss_dict_reduced_unscaled = {f'{k}_unscaled': v
for k, v in loss_dict_reduced.items()}
# weighted_loss of each type
loss_dict_reduced_scaled = {k: v * weight_dict[k]
for k, v in loss_dict_reduced.items() if k in weight_dict}
losses_reduced_scaled = sum(loss_dict_reduced_scaled.values())
loss_value = losses_reduced_scaled.item()
if not math.isfinite(loss_value):
logging.info("Loss is {}, stopping training".format(loss_value))
logging.info(str(loss_dict_reduced))
sys.exit(1)
losses.backward()
if (cnt + 1) % cfg.iter_size == 0:
# scale gradients when iter size is functioning
if cfg.iter_size != 1:
for g in optimizer.param_groups:
for p in g['params']:
p.grad /= cfg.iter_size
if max_norm > 0:
torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm)
optimizer.step()
optimizer.zero_grad()
metric_logger.update(
loss=loss_value, **loss_dict_reduced_scaled, **loss_dict_reduced_unscaled)
metric_logger.update(lr=optimizer.param_groups[0]["lr"])
cnt += 1
optimizer.zero_grad()
# gather the stats from all processes
metric_logger.synchronize_between_processes()
logging.info(f"Averaged stats:{metric_logger}")
return {k: meter.global_avg for k, meter in metric_logger.meters.items()}
def to_device(t, device):
if isinstance(t, (list, tuple)):
return t
else:
return t.to(device)
@torch.no_grad()
def test(model, criterion, postprocessor, data_loader, base_ds, device, output_dir, cfg, subset='val', epoch=None, test_mode=False):
'''
Run inference and evaluation. Do not compute loss
test_mode: indicates that we are evaluating specific epoch during testing
'''
model.eval()
criterion.eval()
metric_logger = utils.MetricLogger(delimiter=" ")
metric_logger.add_meter('class_error', utils.SmoothedValue(
window_size=1, fmt='{value:.2f}'))
iou_range = [0.3, 0.4, 0.5, 0.6, 0.7] if cfg.dataset_name == 'thumos14' else [
num/100 for num in range(50, 100, 5)]
# logging.info('iou range {}'.format(iou_range))
# action_evaluator = None
action_evaluator = TADEvaluator(cfg.dataset_name, subset, base_ds, nms_mode=[
'raw'], iou_range=iou_range, epoch=epoch)
# raw_res = []
cnt = 0
for (samples, targets) in tqdm.tqdm(data_loader, total=len(data_loader)):
samples = samples.to(device)
outputs = model((samples.tensors, samples.mask))
# raw_res.append((outputs, targets))
video_duration = torch.FloatTensor(
[t["video_duration"] for t in targets]).to(device)
results = postprocessor(outputs, video_duration, fuse_score=cfg.act_reg)
res = {target['video_id']: output for target,
output in zip(targets, results)}
if action_evaluator is not None:
action_evaluator.update(res, assign_cls_labels=cfg.binary)
# if cnt >= 9:
# break
cnt += 1
# accumulate predictions from all videos
if action_evaluator is not None:
action_evaluator.synchronize_between_processes()
action_evaluator.accumulate(cfg.test_slice_overlap)
# dump detections
if test_mode:
save_path = osp.join('outputs', 'detection_{}.json')
action_evaluator.dump_detection(save_path)
action_evaluator.summarize()
stats = {}
if action_evaluator is not None:
for k, v in action_evaluator.stats.items():
for vk, vv in v.items():
stats[vk + '_' + k] = vv
mAP_values = ' '.join([f'{k}: {100*v:.2f}'.format(k, v)
for k, v in stats.items() if k.startswith('mAP')])
logging.info(mAP_values)
stats['stats_summary'] = action_evaluator.stats_summary
# with open('raw_outputs.pkl', 'wb') as f:
# pickle.dump(raw_res, f)
return stats