- Golang
- Python dependencies
pip3 install -r requirements.txt
- k8s Kind cluster
go install sigs.k8s.io/[email protected]
- kubectl
- helm
To run the test:
python3 acto.py \
--seed SEED, -s SEED seed CR file
--operator OPERATOR, -o OPERATOR
yaml file for deploying the operator with kubectl
--helm OPERATOR_CHART
Path of operator helm chart
--kustomize KUSTOMIZE
Path of folder with kustomize
--init INIT Path of init yaml file (deploy before operator)
--duration DURATION, -d DURATION
Number of hours to run
--preload-images [PRELOAD_IMAGES ...]
Docker images to preload into Kind cluster
--crd-name CRD_NAME Name of CRD to use, required if there are multiple CRDs
--helper-crd HELPER_CRD
generated CRD file that helps with the input generation
--custom-fields CUSTOM_FIELDS
Python source file containing a list of custom fields
--analysis-result ANALYSIS_RESULT
JSON file resulted from the code analysis
--context CONTEXT Cached context data
--num-workers NUM_WORKERS
Number of concurrent workers to run Acto with
--dryrun Only generate test cases without executing them
-
(A Known Issue of Kind) Failed cluster creation when using the multiple worker functionality by specifying
--num-workers
.This may be caused by running out of inotify resources. Resource limits are defined by fs.inotify.max_user_watches and fs.inotify.max_user_instances system variables. For example, in Ubuntu these default to 8192 and 128 respectively, which is not enough to create a cluster with many nodes.
To increase these limits temporarily, run the following commands on the host:
sudo sysctl fs.inotify.max_user_watches=524288 sudo sysctl fs.inotify.max_user_instances=512
To make the changes persistent, edit the file /etc/sysctl.conf and add these lines:
fs.inotify.max_user_watches = 524288 fs.inotify.max_user_instances = 512
rabbitmq-operator:
python3 acto.py --seed data/rabbitmq-operator/cr.yaml \
--operator data/rabbitmq-operator/operator.yaml \
--custom-fields data.rabbitmq-operator.prune \
--context data/rabbitmq-operator/context.json
cass-operator (using kustomize)
python3 acto.py --seed data/cass-operator/cr.yaml \
--kustomize "github.com/k8ssandra/cass-operator/config/deployments/cluster?ref=v1.10.3" \
--init data/cass-operator/init.yaml \
--custom-fields data.cass-operator.prune \
--context data/cass-operator/context.json \
--crd-name cassandradatacenters.cassandra.datastax.com
zookeeper-operator (using helm)
python3 acto.py --seed data/zookeeper-operator/cr.yaml \
--helm data/zookeeper-operator/zookeeper-operator \
--crd-name=zookeeperclusters.zookeeper.pravega.io
mongodb-operator (using kubectl)
python3 acto.py --seed data/percona-server-mongodb-operator/cr.yaml \
--operator data/percona-server-mongodb-operator/bundle.yaml \
--context data/percona-server-mongodb-operator/context.json \
--crd-name perconaservermongodbs.psmdb.percona.com \
--custom-fields data.percona-server-mongodb-operator.prune
casskop-operator (using helm)
python3 acto.py --candidates data/casskop-operator/candidates.yaml --seed data/casskop-operator/cr.yaml --helm data/casskop-operator/cassandra-operator --init data/casskop-operator/init.yaml --duration 1 --crd-name=cassandraclusters.db.orange.com
nifikop-operator (using helm)
python3 acto.py --candidates data/nifikop-operator/candidates.yaml --seed data/nifikop-operator/cr.yaml --helm data/nifikop-operator/nifikop-operator --duration 1 --crd-name=nificlusters.nifi.orange.com
xtradb-operator (using helm)
python3 acto.py --candidates data/xtradb-operator/candidates.yaml --seed data/xtradb-operator/cr.yaml --helm data/xtradb-operator/xtradb-operator --duration 1 --crd-name=perconaxtradbclusters.pxc.percona.com
redis-operator
python3 acto.py --seed data/redis-operator/cr.yaml \
--operator data/redis-operator/all-redis-operator-resources.yaml \
--init data/redis-operator/databases.spotahome.com_redisfailovers.yaml \
--preload-images quay.io/spotahome/redis-operator:v1.1.0 redis:6.2.6-alpine \
--context data/redis-operator/context.json \
--custom-fields data.redis-operator.prune \
--duration 1
tidb-operator
python3 acto.py --seed data/tidb-operator/cr.yaml \
--helm data/tidb-operator/tidb-operator \
--init data/tidb-operator/crd.yaml \
--context data/tidb-operator/context.json \
--custom-fields data.tidb-operator.prune \
--crd-name tidbclusters.pingcap.com \
--duration 1
spark-operator
python3 acto.py --seed data/spark-operator/cr.yaml \
--helm data/spark-operator/spark-operator-chart --crd-name=sparkapplications.sparkoperator.k8s.io
ot-container-kit/redis-operator
python3 acto.py --seed data/redis-ot-container-kit-operator/cr_cluster.yaml \
--operator data/redis-ot-container-kit-operator/bundle.yaml \
--crd-name redisclusters.redis.redis.opstreelabs.in \
--custom-fields data.redis-ot-container-kit-operator.prune \
percona-xtradb-cluster-operator
python3 acto.py --seed data/percona-xtradb-cluster-operator/cr.yaml \
--operator data/percona-xtradb-cluster-operator/cw-bundle.yaml \
--crd-name perconaxtradbclusters.pxc.percona.com \
--custom-fields data.percona-xtradb-cluster-operator.prune
Acto aims to automate the E2E testing as much as possible to minimize users' labor.
Currently, porting operators still requires some manual effort, we need:
- A way to deploy the operator, the deployment method needs to handle all the necessary prerequisites to deploy the operator, e.g. CRD, namespace creation, RBAC, etc. Current we support three deploy methods:
yaml
,helm
, andkustomize
. For example, rabbitmq-operator usesyaml
for deployment, and the example is shown here - A seed CR yaml serving as the initial cr input. This can be any valid CR for your application. Example