Skip to content

Latest commit

 

History

History
290 lines (140 loc) · 40.4 KB

Selected-Conference-Papers.md

File metadata and controls

290 lines (140 loc) · 40.4 KB

Selected Conference Papers:

2024

  1. [AAAI] Yu Feng, Weixuan Liang, Xinhang Wan, Jiyuan Liu, Suyuan Liu, Qian Qu, Renxiang Guan, Huiying Xu,Xinwang LiuIncremental Nyström-based Multiple Kernel Clustering. AAAI 2025. (CCF Rank A)
  2. [AAAI] Pei Zhang, Yuangang Pan, Siwei Wang, Shengju Yu, Huiying Xu, En Zhu, Xinwang Liu, Ivor Tsang: Max-Mahalanobis Anchors Guidance for Multi-View Clustering. AAAI 2025. (CCF Rank A)
  3. [AAAI] Renxiang Guan, Wenxuan Tu, Siwei Wang, Jiyuan Liu, Dayu Hu, Junhong Li, Yu Feng, Baili Xiao, Chang Tang, Xinwang LiuStructure-Adaptive Multi-View Graph Clustering for Remote Sensing Data. AAAI 2025. (CCF Rank A)
  4. [NeurIPS] Haoyuan Qin, Chennan Ma, Mian Deng, Zhengzhu Liu, Songzhu Mei, Xinwang Liu, Cheng Wang, Siqi Shen: The Dormant Neuron Phenomenon in Multi-Agent Reinforcement Learning Value Factorization . NeurIPS 2024. (CCF Rank A)
  5. [NeurIPS] Fangdi Wang, Siwei Wang, Jiaqi Jin, jingtao Hu, Suyuan Liu, Xihong Yang, Xinwang Liu, En Zhu: Evaluate then cooperate: Shapley-based View Cooperation Enhancement for Multi-view Clustering . NeurIPS 2024. (CCF Rank A)
  6. [NeurIPS] Yue Liu, Shihao Zhu, Jun Xia, Yingwei Ma, Jian Ma, Wenliang Zhong, Xinwang Liu, Shengju Yu, Kejun Zhang: End-to-end Learnable Clustering for Intent Learning in Recommendation . NeurIPS 2024. (CCF Rank A)
  7. [NeurIPS] Suyuan Liu, Siwei Wang, Ke Liang, Junpu Zhang, Zhibin Dong, Tianrui Liu, En Zhu, Xinwang Liu, Kunlun He: Alleviate Anchor-Shift: Explore Blind Spots with Cross-View Reconstruction for Incomplete Multi-View Clustering . NeurIPS 2024. (CCF Rank A)
  8. [NeurIPS] Ke Liang, Yue Liu,Hao Liu, Lingyuan Meng, Suyuan Liu, Siwei Wang, Sihang, Zhou, Xinwang Liu: Clustering then Propagation: Select Better Anchors for Knowledge Graph Embedding . NeurIPS 2024. (CCF Rank A)
  9. [NDSS] Hao Yu, Chuan Ma, Xinhang Wang, Jun Wang, Tao Xiang, Meng Shen, Xinwang Liu: DShield: Defending against Backdoor Attacks on Graph Neural Networks via Discrepancy Learning. NDSS 2025. (CCF Rank A)
  10. [ACM MM] Ke Liang, Lingyuan Meng, Yue Liu, Meng Liu, Wei Wei, Siwei Wang, Suyuan Liu, Wenxuan Tu, Sihang Zhou, Xinwang Liu: Simple Yet Effective: Structure Guided Pre-trained Transformer for Multi-modal Knowledge Graph Reasoning. ACM MM 2024. (CCF Rank A)
  11. [ACM MM] Huimin Ma, Siwei Wang, Shengju Yu, Suyuan Liu, Jun-Jie Huang, Huijun Wu, Xinwang Liu, En Zhu: Automatic and Aligned Anchor Learning Strategy for Multi-View Clustering. ACM MM 2024. (CCF Rank A)
  12. [ACM MM] Dayu Hu, Suyuan Liu, Jun Wang, Junpu Zhang, Siwei Wang, Xingchen Hu, Xinzhong Zhu, Chang Tang, Xinwang Liu: Reliable Attribute-missing Multi-view Clustering with Instance-level and Feature-level Cooperative Imputation. ACM MM 2024. (CCF Rank A)
  13. [ACM MM] Xihong Yang, Erxue Min, Ke Liang, Yue Liu, Siwei Wang, Sihang Zhou, Huijun Wu, Xinwang Liu, En Zhu: GraphLearner: Graph Node Clustering with Fully Learnable Augmentation. ACM MM 2024. (CCF Rank A)
  14. [ACM MM] Qian Qu, Xinhang Wan, Weixuan Liang, Jiyuan Liu, Yu Feng, Huiying Xu, Xinwang Liu, En Zhu: A Lightweight Anchor-Based Incremental Framework for Multi-view Clustering. ACM MM 2024. (CCF Rank A)
  15. [ACM MM] Xiao He, Chang Tang, Xinwang Liu, Chuankun Li, Shan An and Zhenglai Li: Heterogeneous Graph Guided Contrastive Learning for Spatially Resolved Transcriptomics Data. ACM MM 2024. (CCF Rank A)
  16. [ACM MM] Fangdi Wang, Siwei Wang, Tianrui Liu, Jiaqi Jin, Zhibin Dong, Xihong Yang, Yu Feng, Xinzhong Zhu, Xinwang Liu, En Zhu: View Gap Matters: Cross-view Topology and Information Decoupling for Multi-view Clustering. ACM MM 2024. (CCF Rank A)
  17. [ACM MM] Jiaxin Zhang, Yiqi Wang, Xihong Yang, Siwei Wang, Yu Feng, Yu Shi, Ruichao Ren, En Zhu, Xinwang Liu: Test-Time Training on Graphs with Large Language Models (LLMs). ACM MM 2024. (CCF Rank A)
  18. [ICML] Xinhang Wan, Jiyuan Liu, Xinwang Liu, Yi Wen, Hao Yu, Siwei Wang, Shengju Yu, Tianjiao Wan, Jun Wang, En Zhu: Decouple then Classify: A Dynamic Multi-view Labeling Strategy with Shared and Specific Information. ICML 2024. (CCF Rank A)
  19. [ICML] Shengju Yu, Zhibin Dong, Siwei Wang, Xinhang Wan, Yue Liu, Weixuan Liang, Pei Zhang, Wenxuan Tu, Xinwang LiuTowards Resource-friendly, Extensible and Stable Incomplete Multi-view Clustering. ICML 2024. (CCF Rank A)
  20. [ICML] Weixuan Liang, Xinwang Liu, En Zhu, Shengju Yu, Huiying Xu, Xinzhong Zhu: Scalable Multiple Kernel Clustering: Learning Clustering Structure from Expectation. ICML 2024. (CCF Rank A)
  21. [CVPR] Suyuan Liu, Ke Liang, Zhibin Dong, Siwei Wang, Xihong Yang, Sihang Zhou, En Zhu, Xinwang LiuLearn from View Correlation: An Anchor Enhancement Strategy for Multi-view Clustering. CVPR 2024. (CCF Rank A)
  22. [ICLR] Meng Liu, Yue Liu, Ke Liang, Wenxuan Tu, Siwei Wang, Sihang Zhou, Xinwang LiuDeep Temporal Graph Clustering. ICLR 2024. (THU Rank A)
  23. [AAAI] Wenxuan Tu, Renxiang Guan, Sihang Zhou, Chuan Ma, Xin Peng, Zhiping Cai, Zhe Liu, Jieren Cheng, Xinwang LiuAttribute-missing Graph Clustering Network. AAAI 2024. (CCF Rank A)
  24. [AAAI] Suyuan Liu, Junpu Zhang, Yi Wen, Xihong Yang, Siwei Wang, Yi Zhang, En Zhu, Chang Tang, Long Zhao, Xinwang LiuSample-level Cross-view Similarity Learning for Incomplete Multi-view Clustering. AAAI 2024. (CCF Rank A)
  25. [AAAI] Ke Liang, Sihang Zhou, Meng Liu, Yue Liu, Wenxuan Tu, Yi Zhang, Liming Fang, Zhe Liu, Xinwang LiuHawkes-enhanced Spatial-Temporal Hypergraph Contrastive Learning based on Criminal Correlations. AAAI 2024. (CCF Rank A)
  26. [AAAI] Ke Liang, Lingyuan Meng, Sihang Zhou, Wenxuan Tu, Siwei Wang, Yue Liu, Meng Liu, Long Zhao, Xiangjun Dong, Xinwang LiuMINES: Message Intercommunication for Inductive Relation Reasoning over Neighbor-Enhanced Subgraphs. AAAI 2024. (CCF Rank A)
  27. [AAAI] Shengju Yu, Siwei Wang, Pei Zhang, Miao Wang, Ziming Wang, Zhe Liu, Liming Fang, En Zhu, Xinwang LiuDVSAI: Diverse View-Shared Anchors Based Incomplete Multi-view Clustering. AAAI 2024. (CCF Rank A)

2023

  1. [NeurIPS] Siqi Shen, Chennan Ma, Chao Li, Weiquan Liu, Yongquan Fu, Songzhu Mei, Xinwang Liu, Cheng Wang: RiskQ: Risk-sensitive Multi-Agent Reinforcement Learning Value Factorization . NeurIPS 2023. (CCF Rank A)
  2. [NeurIPS] Yufeng Zhang, Jialu Pan, Wanwei Liu, Zhenbang Chen, Xinwang Liu, Ji Wang, Kenli Li: On the Properties of Kullback-Leibler Divergence Between Multivariate Gaussian Distributions . NeurIPS 2023. (CCF Rank A)
  3. [ACM MM] Yue Liu, Ke Liang, Jun Xia, Xihong Yang, Sihang Zhou, Meng Liu, Xinwang Liu, and Stan Z. Li: Reinforcement Graph Clustering with Unknown Cluster Number. ACM MM 2023. (CCF Rank A)
  4. [ACM MM] Jingcan Duan, Pei Zhang, Siwei Wang, Jingtao Hu, Hu Jin, Jiaxin Zhang, Haifang Zhou, Xinwang Liu: Normality Learning-based Graph Anomaly Detection via Multi-Scale Contrastive Learning. ACM MM 2023. (CCF Rank A)
  5. [ACM MM] Xin Zou, Chang Tang, Xiao Zheng, Zhenglai Li, Xiao He, Shan An, and Xinwang Liu: DPNET: Dynamic Poly-attention Network for Trustworthy Multi-modal Classification. ACM MM 2023. (CCF Rank A)
  6. [ACM MM] Yi Wen, Siwei Wang, Ke Liang, Weixuan Liang, Xinhang Wan, Xinwang Liu, Suyuan Liu, Jiyuan Liu, and En Zhu: Scalable Incomplete Multi-View Clustering with Structure Alignment. ACM MM 2023. (CCF Rank A)
  7. [ACM MM] Yi Wen, Suyuan Liu, Xinhang Wan, Siwei Wang, Ke Liang, Xinwang Liu, Xihong Yang, and Pei Zhang: Efficient Multi-View Graph Clustering with Local and Global Structure Preservation. ACM MM 2023. (CCF Rank A)
  8. [ACM MM] Xihong Yang, Cheng Tan, Yue Liu, Ke Liang, Siwei Wang, Sihang Zhou, Jun Xia, Stan Z. Li, Xinwang Liu, En Zhu: CONVERT: Contrastive Graph Clustering with Reliable Augmentation. ACM MM 2023. (CCF Rank A)
  9. [ACM MM] Xihong Yang, Jiaqi Jin, Siwei Wang, Ke Liang, Yue Liu, Yi Wen, Suyuan Liu, Sihang Zhou, Xinwang Liu, En Zhu: DealMVC: Dual Contrastive Calibration for Multi-view Clustering. ACM MM 2023. (CCF Rank A)
  10. [ACM MM] Meng Liu, Ke Liang, Dayu Hu, Hao Yu, Yue Liu, Lingyuan Meng, Wenxuan Tu, Sihang Zhou, Xinwang Liu: TMac: Temporal Multi-Modal Graph Learning for Acoustic Event Classification. ACM MM 2023. (CCF Rank A)
  11. [ICCV] Zhibin Dong, Jiaqi Jin, Siwei Wang, Xinwang Liu, En Zhu: Cross-view Topology Based Consistent and Complementary Information for Deep Multi-view Clustering. ICCV 2023. (CCF Rank A)
  12. [CVPR] Jiaqi Jin, Siwei Wang, Zhibin Dong, Xinwang Liu, En Zhu: Deep Incomplete Multi-view Clustering with Cross-view Partial Sample and Prototype Alignment. CVPR 2023. (CCF Rank A)
  13. [ICML] Weixuan Liang, Xinwang Liu, Yong Liu, Chuan Ma, Yunping Zhao, Zhe Liu, En Zhu: Consistency of Multiple Kernel Clustering. ICML 2023. (CCF Rank A)
  14. [ICML] Yue Liu, Ke Liang, Jun Xia, Sihang Zhou, Xihong Yang, Xinwang Liu, Stan Z. Li: Dink-Net: Neural Clustering on Large Graphs. ICML 2023. (CCF Rank A)
  15. [SIGIR] Ke Liang, Lingyuan Meng, Meng Liu, Yue Liu, Wenxuan Tu, Siwei Wang, Sihang Zhou, Xinwang LiuLearn from Relational Correlations and Periodic Events for Temporal Knowledge Graph Reasoning. SIGIR 2023. (CCF Rank A)
  16. [AAAI] Xinhang Wan, Xinwang Liu, Jiyuan Liu, Siwei Wang ,Yi Wen, Weixuan Liang, En Zhu, Zhe Liu, Lu Zhou: Auto-weighted Multi-view Clustering for Large-scale Data. AAAI 2023. (CCF Rank A)
  17. [AAAI] Xihong Yang, Yue Liu, Sihang Zhou, Siwei Wang, Wenxuan Tu, Qun Zheng, Xinwang Liu, Liming Fang, En Zhu: Cluster-guided Contrastive Graph Clustering Network. AAAI 2023 (CCF Rank A)
  18. [AAAI] Yue Liu, Xihong Yang, Sihang Zhou, Xinwang Liu, Zhen Wang, Ke Liang, Wenxuan Tu, Liang Li, Jingcan Duan, Cancan Chen: Hard Sample Aware Network for Contrastive Deep Graph Clustering. AAAI 2023 (CCF Rank A)[PDF][Code]
  19. [AAAI] Pei Zhang, Siwei Wang, Liang Li, Changwang Zhang, Xinwang Liu, En Zhu, Zhe Liu, Lu Zhou, Lei Luo: Let the data choose: Flexible and Diverse Anchor Graph Fusion for Scalable Multi-view Clustering. AAAI 2023. (CCF Rank A)

2022

  1. [NeurIPS] Siwei Wang, Xinwang Liu, Suyuan Liu, Jiaqi Jin, Wenxuan Tu, Xinzhong Zhu, En Zhu: Align then Fusion: Generalized Large-scale Multi-view Clustering with Anchor Matching Correspondences . NeurIPS 2022. (CCF Rank A)
  2. [NeurIPS] Weixuan Liang, Xinwang Liu, Yong Liu, Sihang Zhou, Jun-Jie Huang, Siwei Wang, Jiyuan Liu, Yi Zhang, En Zhu: Stability and Generalization of Kernel Clustering: from Single Kernel to Multiple Kernel. NeurIPS 2022. (CCF Rank A)[PDF]
  3. [NeurIPS] Siqi Shen, Mengwei Qiu, Liu Jun, Weiquan Liu, Yongquan Fu, Xinwang Liu, Cheng Wang: ResQ: A Residual Q Function-based Approach for Multi-Agent Reinforcement Learning Value Factorization. NeurIPS 2022. (CCF Rank A)
  4. [ACM MM] Xinhang Wan, Jiyuan Liu, Weixuan Liang, Xinwang Liu, Yi Wen and En Zhu: Continual Multi-view Clustering. ACM MM 2022. (CCF Rank A)[PDF]
  5. [ACM MM] Yi Zhang, Weixuan Liang, Xinwang Liu, Sisi Dai, Siwei Wang, Liyang Xu and En Zhu: Sample Weighted Multiple Kernel K-means via min-max optimization. ACM MM 2022. (CCF Rank A)[PDF]
  6. [ACM MM] Guang Yu, Siqi Wang, Zhiping Cai, Xinwang Liu and Chengkun Wu: Effective Video Abnormal Event Detection by Learning A Consistency-Aware High-Level Feature Extractor. ACM MM 2022. (CCF Rank A)[PDF]
  7. [ACM MM] Tiejian Zhang, Xinwang Liu, En Zhu, Sihang Zhou, Zhibin Dong: Efficient Anchor Learning-based Multi-view Clustering -- A Late Fusion Method. ACM MM 2022. (CCF Rank A)[PDF]
  8. [ACM MM] Junpu Zhang, Liang Li, Siwei Wang, Jiyuan Liu, Yue Liu, Xinwang Liu and En Zhu: Multiple Kernel Clustering with Dual Noise Minimization. ACM MM 2022. (CCF Rank A)[PDF]
  9. [IJCAI] Wenxuan Tu, Sihang Zhou, Xinwang Liu, Yue Liu, Zhiping Cai, En Zhu, Changwang Zhang, Jieren Cheng: Initializing Then Refining: A Simple Graph Attribute Imputation Network. IJCAI 2022. (CCF Rank A)[PDF]
  10. [IJCAI] Lei Gong,  Sihang Zhou, Wenxuan Tu, Xinwang Liu: Attributed Graph Clustering with Dual Redundancy Reduction. IJCAI 2022. (CCF Rank A)[PDF]
  11. [CVPR] Siwei Wang, Xinwang Liu, Li Liu, Wenxuan Tu, Xinzhong Zhu, Jiyuan Liu, Sihang Zhou, En Zhu: Highly-efficient Incomplete Large-scale Multi-view Clustering with Consensus Bipartite Graph. CVPR 2022. (CCF Rank A)
  12. [CVPR] Guang Yu, Siqi Wang, Zhiping Cai, Xinwang Liu, Chuanfu Xu, Chengkun Wu: Deep Anomaly Discovery from Unlabeled Videos via Normality Advantage and Self-Paced Refinement. CVPR 2022. (CCF Rank A)[PDF]
  13. [CVPR] Yao Duan, Chenyang Zhu, Yuqing Lan, Renjiao Yi, Xinwang Liu, Kai Xu: DisARM: Displacement Aware Relation Module for 3D Detection. CVPR 2022. (CCF Rank A)
  14. [AAAI] Yue Liu, Wenxuan Tu, Sihang Zhou, Xinwang Liu, Linxuan Song, Xihong Yang, En Zhu: Deep Graph Clustering via Dual Correlation Reduction. AAAI 2022. (CCF Rank A)[PDF][Code]
  15. [AAAI] Suyuan Liu, Siwei Wang, Pei Zhang, Kai Xu, Xinwang Liu, Changwang Zhang, Feng Gao: Efficient One-pass Multi-view Subspace Clustering with Consensus Anchors. AAAI 2022. (CCF Rank A)[PDF]
  16. [AAAI] Yi Zhang, Xinwang Liu, Jiyuan Liu, Sisi Dai, Changwang Zhang, Kai Xu, En Zhu: Fusion Multiple Kernel K-means. AAAI 2022. (CCF Rank A)[PDF]
  17. [AAAI] Weixuan Liang, Xinwang Liu, Sihang Zhou, Jiyuan Liu, Siwei Wang, En Zhu: Robust Graph-based Multi-view Clustering. AAAI 2022. (CCF Rank A)[PDF][Code]

2021

  1. [ICCV]Jiyuan Liu, Xinwang Liu, Yuexiang Yang, Li Liu, Siqi Wang, Weixuan Liang, Jiangyong Shi: One-pass Multi-view Clustering for Large-scale Data. ICCV 2021: 12344-12353. (CCF Rank A)[PDF][Code]
  2. [ICCV] Xinwang Liu, Sihang Zhou, Li Liu, Chang Tang, Siwei Wang, Jiyuan Liu, Yi Zhang: Localized Simple Multiple Kernel K-means. ICCV 2021: 9293-9301. (CCF Rank A)[PDF][Code]
  3. [ACM MM]Yi Zhang, Xinwang Liu, Siwei Wang, Jiyuan Liu, Sisi Dai, En Zhu: One-Stage Incomplete Multi-view Clustering via Late Fusion. ACM MM 2021: 2717–2725. (CCF Rank A)[PDF][Code]
  4. [ACM MM]Mengjing Sun, Pei Zhang, Siwei Wang, Sihang Zhou, Wenxuan Tu, Xinwang Liu, En Zhu, Changjian Wang: Scalable Multi-view Subspace Clustering with Unified Anchors. ACM MM 2021: 3528–3536. (CCF Rank A)[PDF][Code]
  5. [ACM MM]Chen Zhang, Siwei Wang, Jiyuan Liu, Sihang Zhou, Pei Zhang, Xinwang Liu, En Zhu, Changwang Zhang: Multi-view Clustering via Deep Matrix Factorization and Partition Alignment. ACM MM 2021: 4156–4164. (CCF Rank A)[PDF][Code]
  6. [ACM MM] Jiyuan Liu, Xinwang Liu, Yi Zhang, Pei Zhang, Wenxuan Tu, Siwei Wang, Sihang Zhou, Weixuan Liang, Siqi Wang and Yuexiang Yang: Self-representation Subspace Clustering for Incomplete Multi-view Data. ACM MM 2021: 2726–2734. (CCF Rank A)[PDF][Code]
  7. [ICML] Xinwang Liu, Li Liu, Qing Liao, Chang Tang, Siwei Wang, Wenxuan Tu, Jiyuan Liu, Yi Zhang and En Zhu: One Pass Late Fusion Multi-view Clustering. ICML 2021: 6850-6859. (CCF Rank A)[PDF] [Code]
  8. [IJCAI] Chang Tang, Xinwang Liu, En Zhu, Lizhe Wang and Albert Zomaya: Hyperspectral Band Selection via Spatial-Spectral Weighted Region-wise Multiple Graph Fusion-Based Spectral Clustering. IJCAI 2021: 3038-3044. (CCF Rank A)[PDF]
  9. [AAAI] Jiyuan Liu, Xinwang Liu, Yuexiang Yang, Siwei Wang, Sihang Zhou: Hierarchical Multiple Kernel Clustering. AAAI 2021: 35(10), 8671-8679. (CCF Rank A)[PDF] [Code]
  10. [AAAI] Wenxuan Tu, Sihang Zhou, Xinwang Liu, Xifeng Guo, Zhiping Cai, En Zhu, and Jieren Cheng: Deep Fusion Clustering Network. AAAI 2021: 35(11), 9978-9987. (CCF Rank A)[PDF] [Code]

2020

  1. [IJCAI] Jinglin Xu, Xiangsen Zhang, Wenbin Li, Xinwang Liu, and Junwei Han: Joint Multi-view 2D Convolutional Neural Networks for 3D Object Classification. IJCAI 2020: 3202-3208. (CCF Rank A)[PDF]
  2. [AAAI] Sihang Zhou, Xinwang Liu, Jiyuan Liu, Xifeng Guo, Yawei Zhao, En Zhu, Yongping Zhai, Jianping Yin and Wen Gao: Multi-View Spectral Clustering with Optimal Neighborhood Laplacian Matrix. AAAI 2020: 34(04), 6965-6972. (CCF Rank A) [PDF] [Code]
  3. [AAAI] Chang Tang, Xinwang Liu, Xinzhong Zhu, En Zhu, Kun Sun, Pichao Wang, Lizhe Wang and Albert Zomaya: MRF: Defocus Blur Detection via Recurrently Refining Multi-scale Residual Features. AAAI 2020: 34(07), 12063-12070. (CCF Rank A)
  4. [AAAI] Chang Tang, Xinwang Liu, Xinzhong Zhu, En Zhu, Zhigang Luo, Wen Gao: CGD: Multi-view Clustering via Cross-view Graph Diffusion. AAAI 2020: 34(04), 5924-5931. (CCF Rank A)
  5. [AAAI] Li Cheng, Yijie Wang, Xinwang Liu and Bin Li: Outlier Detection Ensemble with Embedded Feature Selection. AAAI 2020: 34(04), 3503-3512. (CCF Rank A) [PDF]
  6. [AAAI] Jinglin Xu, Wenbin Li, Xinwang Liu, Dingwen Zhang, Ji Liu, Junwei Han: Embedding Deep Interaction Information for Multi-view Categorization. AAAI 2020: 34(04), 6494-6501. (CCF Rank A)

2019

  1. [NeurIPS] Siqi Wang, Yijie Zeng, Xinwang Liu, En Zhu, Jianping Yin, Chuanfu Xu, and Marius Kloft: Effective End-to-end Unsupervised Outlier Detection via Inlier Priority of Discriminative Network. NeurIPS 2019: 5962–5975 (CCF Rank A) [PDF] [Code]
  2. [AAAI] Xinwang Liu, Xinzhong Zhu, Miaomiao Li, Chang Tang, En Zhu, Jianping Yin, Wen Gao: Efficient and Effective Incomplete Multi-view Clustering. AAAI 2019: 33(01), 4392-4399.(CCF Rank A) [PDF]
  3. [AAAI] Chang Tang, Xinwang Liu, Xinzhong Zhu, Lizhe Wang: Cross-view Local Structure Preserved Diversity and Consensus Learning for Multi-view Unsupervised Feature Selection. AAAI 2019: 33(01), 5101-5108.(CCF Rank A) [PDF]
  4. [AAAI] Siqi Wang, En Zhu, Xiping Hu, Xinwang Liu, Qiang Liu, Jianping Yin, Fei Wang: Robustness Can Be Cheap: A Highly Efficient Approach to Discover Outliers under High Outlier Ratios. AAAI 2019: 33(01), 5313-5320.(CCF Rank A) [PDF]
  5. [CVPR] Chang Tang, Xinzhong Zhu, Xinwang Liu, Lizhe Wang, Albert Zomaya: DeFusionNET: Defocus Blur Detection via Recurrently Fusing and Refining Multi-scale Deep Features. CVPR 2019: 2700-2709. (CCF Rank A) [PDF]
  6. [IJCAI] Xifeng Guo, Xinwang Liu, En Zhu and Jianping Yin: Affine Equivariant Autoencoder. IJCAI 2019: 2413-2419.(CCF Rank A) [PDF]
  7. [IJCAI] Siwei Wang, Xinwang Liu, Chang Tang, Jiyuan Liu, En Zhu, Jianping Yin, Jiangtao Hu and Jingyuan Xia: Multi-view Clustering via Late Fusion Alignment Maximization. IJCAI 2019: 3778-3784. (CCF Rank A) [PDF] [Code]
  8. [IJCAI] Wenzhang Zhuge, Chenping Hou, Xinwang Liu, Hong Tao and Dongyun Yi: Simultaneous Representation Learning and Clustering for Incomplete Multi-view Data. IJCAI 2019: 4482-4488. (CCF Rank A) [PDF]

2018

  1. [IJCAI] Xinzhong Zhu, Xinwang Liu, Miaomiao Li, En Zhu, Li Liu, Zhiping Cai, Jianping Yin, Wen Gao: Localized Incomplete Multiple Kernel k-means. IJCAI 2018: 3271-3277. (CCF Rank A) [PDF]
  2. [IJCAI] Changqing Zhang, Yeqinq Liu, Yue Liu, Qinghua Hu, Xinwang Liu, Pengfei Zhu: FISH-MML: Fisher-HSIC Multi-View Metric Learning. IJCAI 2018: 3054-3060. (CCF Rank A) [PDF]
  3. [AAAI] Pichao Wang, Wanqing Li, Jun Wan, Philip Ogunbona, and Xinwang Liu: Cooperative Training of Deep Aggregation Networks for RGB-D Action Recognition. AAAI 2018: 32(1), 7404-7411. (CCF Rank A) [PDF]
  4. [AAAI] Changqing Zhang, Ziwei Yu, Qinghua Hu, Pengfei Zhu, Xiaobo Wang, and Xinwang Liu: Latent Semantic Aware Multi-view Multi-label Classification. AAAI 2018: 32(1), 4414-4421. (CCF Rank A) [PDF]
  5. [AAAI] Hong Tao, Chenping Hou, Xinwang Liu, Dongyun Yi and Jubo Zhu: Reliable Multi-View Clustering. AAAI 2018: 32(1), 4123-4130. (CCF Rank A) [PDF]
  6. [ECCV] Melih Engin, Lei Wang, Luping Zhou, Xinwang Liu: DeepKSPD: Learning Kernel-Matrix-Based SPD Representation For Fine-Grained Image Recognition. ECCV 2018: 629-645. (CCF Rank B) [PDF]

2017

  1. [AAAI] Xinwang Liu, Miaomiao Li, Lei Wang, Yong Dou, Jianping Yin and En Zhu: Multiple Kernel k-means with Incomplete Kernels. AAAI 2017: 31 (1), 2259–2265. (CCF Rank A) [PDF]
  2. [AAAI] Xinwang Liu, Sihang Zhou, Yueqing Wang, Yong Dou, Jianping Yin and En Zhu: Optimal Neighborhood Kernel Clustering with Multiple Kernels. AAAI 2017: 31(1), 2266-2272. (CCF Rank A) [PDF] [Code]
  3. [IJCAI] Yueqing Wang, Xinwang Liu, Yong Dou: Multiple Kernel Clustering Framework with Improved Kernels. IJCAI 2017: 2999–3005. (CCF Rank A) [PDF]
  4. [IJCAI] Yueqing Wang, Xinwang Liu, Yong Dou: Approximate Large-scale Multiple Kernel k-means using Deep Neuron Network. IJCAI 2017: 3006–3012. (CCF Rank A) [PDF]
  5. [IJCAI] Xifeng Guo, Long Gao, Xinwang Liu and Jianping Yin: Improved Deep Embedded Clustering with Local Structure Preservation. IJCAI 2017: 1753-1759. (CCF Rank A) [PDF] [Code]

2016

  1. [IJCAI] Miaomiao Li, Xinwang Liu, Lei Wang, Yong Dou and Jianping Yin: Multi-view Clustering via Maximizing Local Kernel Alignment Maximization. IJCAI 2016: 1704-1710. (CCF Rank A)
  2. [AAAI] Xinwang Liu, Yong Dou, Jianping Yin, Lei Wang, En Zhu: Multiple Kernel k-means Clustering with Matrix-induced Regularization. AAAI 2016: 1888-1894. (CCF Rank A) [PDF][Code]

2015

  1. [AAAI] Xinwang Liu, Lei Wang, Jianping Yin, Yong Dou, Jian Zhang: Absent Multiple Kernel Learning. AAAI 2015: 2807-2813. (CCF Rank A) [PDF]

2014

  1. [AAAI] Xinwang Liu, Lei Wang, Jian Zhang, Jianping Yin: Sample-Adaptive Multiple Kernel Learning. AAAI 2014: 1975-1981. (CCF Rank A) [PDF]

2011

  1. [ICCV] Lingqiao Liu, Lei Wang, Xinwang Liu: In defense of soft-assignment coding. ICCV 2011: 2486-2493. (CCF Rank A) [PDF]