-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathclassifier.py
256 lines (214 loc) · 10.3 KB
/
classifier.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
import torch
import numpy as np
import os
from models.resnet_simclr import ResNetSimCLR, LinearClassifier, CombineModel
import argparse
from utils.dataset_parser.dataset_loader import GetDataLoader
torch.manual_seed(0)
np.random.seed(0)
def parse_option():
parser = argparse.ArgumentParser('argument for training')
parser.add_argument('--batch_size', type=int, default=512,
help='batch_size')
parser.add_argument('--num_workers', type=int, default=2,
help='num of workers to use')
parser.add_argument('--epochs', type=int, default=100,
help='number of training epochs')
# specific task
parser.add_argument('--original_label', type=str, default='Gender')
parser.add_argument("--aux_label", type=str, default='Race')
# optimization
parser.add_argument('--learning_rate', type=float, default=1e-2,
help='learning rate')
parser.add_argument('--weight_decay', type=float, default=10e-6,
help='temperature for loss function')
# model dataset
parser.add_argument('--model', type=str, default='resnet18')
parser.add_argument('--task', type=str, default='mia',
help='specify the attack task, mia or ol')
parser.add_argument('--dataset', type=str, default='CIFAR100',
help='dataset')
parser.add_argument('--data_path', type=str, default='data/',
help='data_path')
# Note: mode is set to ol when training overlearning model just to control the final save name
parser.add_argument('--mode', type=str, default='target',
help='control using target dataset or shadow dataset (for membership inference attack)')
# parser.add_argument('--n_class', type=int, default=100,
# help='number of class')
parser.add_argument('--mean', type=str,
help='mean of dataset in path in form of str tuple')
parser.add_argument('--std', type=str,
help='std of dataset in path in form of str tuple')
parser.add_argument('--data_folder', type=str,
default=None, help='path to custom dataset')
parser.add_argument('--size', type=int, default=32,
help='parameter for RandomResizedCrop')
# method
parser.add_argument('--method', type=str, default='SimCLR',
choices=['SupCon', 'SimCLR'], help='choose method')
parser.add_argument('--projection_head_out_dim', type=int, default=256,
help='number of training epochs')
# temperature
parser.add_argument('--temp', type=float, default=0.5,
help='temperature for loss function')
# other setting
parser.add_argument('--cosine', action='store_true',
help='using cosine annealing')
parser.add_argument('--syncBN', action='store_true',
help='using synchronized batch normalization')
parser.add_argument('--warm', action='store_true',
help='warm-up for large batch training')
parser.add_argument('--trial', type=str, default='0',
help='id for recording multiple runs')
parser.add_argument("--fp16_precision", type=bool, default=False)
parser.add_argument('--log_every_n_steps', type=int,
default=50, help='log_every_n_steps')
parser.add_argument('--save_every_n_epochs', type=int,
default=10, help='save_every_n_epochs')
parser.add_argument('--single_label_dataset', type=list, default=["CIFAR10", "CIFAR100", "STL10"],
help="single_label_dataset")
parser.add_argument('--multi_label_dataset', type=list, default=["UTKFace", "CelebA", "Place365", "Place100", "Place50", "Place20"],
help="multi_label_dataset")
opt = parser.parse_args()
model_encoder_dim_dict = {
"resnet18": 512,
"resnet50": 2048,
"alexnet": 4096,
"vgg16": 4096,
"vgg11": 4096,
"mobilenet": 1280,
"cnn": 512,
}
dataset_class_dict = {
"STL10": 10,
"CIFAR10": 10,
"CIFAR100": 100,
"UTKFace": 2,
"CelebA": 2,
"Place365": 2,
"Place100": 2,
"Place50": 2,
"Place20": 2,
}
opt.n_class = dataset_class_dict[opt.dataset]
opt.encoder_dim = model_encoder_dim_dict[opt.model]
return opt
def _load_encoder_model(opt):
model = ResNetSimCLR(
base_model=opt.model, encoder_dim=opt.encoder_dim, out_dim=opt.projection_head_out_dim)
model_path = "./save/SimCLR/model_%s_bs_%d_dataset_%s/checkpoints/model_%s.pth" % (
opt.model, opt.batch_size, opt.dataset, opt.mode)
state_dict = torch.load(model_path, map_location=torch.device('cpu'))
print("load model from", model_path)
model.load_state_dict(state_dict)
model.eval()
model = model.to(device)
return model
def _load_classifier_model(opt):
n_features = opt.encoder_dim
n_classes = opt.n_class
model = LinearClassifier(n_features, n_classes)
model = model.to(device)
return model
class SimCLR_linear_model_evaluator(object):
def __init__(self, encoder, classifier, opt):
self.encoder = encoder
self.classifier = classifier
self.encoder.eval()
self.total_model = CombineModel(self.encoder, self.classifier)
self.total_model = self.total_model.to(device)
self.opt = opt
self.save_path = "./save/SimCLR/model_%s_bs_%s_dataset_%s/" % (self.opt.model,
self.opt.batch_size, self.opt.dataset)
@staticmethod
def _sample_weight_decay():
# We selected the l2 regularization parameter from a range of 45 logarithmically spaced values between 10−6 and 105
weight_decay = np.logspace(-6, 5, num=45, base=10.0)
weight_decay = np.random.choice(weight_decay)
print("Sampled weight decay:", weight_decay)
return weight_decay
def get_label(self, label):
if self.opt.dataset in self.opt.single_label_dataset:
return label
elif self.opt.dataset in self.opt.multi_label_dataset:
return label[self.opt.original_label]
else:
raise ValueError("dataset not found")
def eval(self, test_loader):
correct = 0
total = 0
with torch.no_grad():
self.total_model.classifier.eval()
for img, label in test_loader:
img, label = img.to(device), self.get_label(label).to(device)
_, logits = self.total_model(img)
predicted = torch.argmax(logits, dim=1)
total += label.size(0)
correct += (predicted == label).sum().item()
final_acc = 100 * correct / total
self.total_model.classifier.train()
return final_acc
def train(self, train_loader, test_loader):
weight_decay = 1e-4
# only need to optimize the parameters of classifier part
optimizer = torch.optim.Adam(self.total_model.classifier.parameters(
), self.opt.learning_rate, weight_decay=weight_decay)
criterion = torch.nn.CrossEntropyLoss()
best_accuracy = 0
self.total_model.classifier.train()
for e in range(1, self.opt.epochs + 1):
batch_n = 0
for img, label in train_loader:
self.total_model.classifier.zero_grad()
batch_n += 1
img, label = img.to(device), self.get_label(label).to(device)
_, logits = self.total_model(img)
loss = criterion(logits, label)
if batch_n % 10 == 0:
print("[Epoch %d][%d/%d] loss:%.3f" %
(e, batch_n, len(train_loader), loss))
loss.backward()
optimizer.step()
if e % 10 == 0:
train_acc = self.eval(train_loader)
epoch_acc = self.eval(test_loader)
print("epoch:%d, train acc:%.3f, test acc:%.3f" %
(e, train_acc, epoch_acc))
if not os.path.exists(self.save_path):
os.makedirs(self.save_path)
if self.opt.dataset in self.opt.single_label_dataset:
torch.save(self.total_model.state_dict(), os.path.join(
self.save_path + 'combined_model_%s_%d.pth' % (self.opt.mode, e)))
elif self.opt.dataset in self.opt.multi_label_dataset:
torch.save(self.total_model.state_dict(), os.path.join(
self.save_path + 'combined_model_%s_%s_%d.pth' % (self.opt.mode, self.opt.original_label, e)))
if not os.path.exists(self.save_path):
os.makedirs(self.save_path)
if self.opt.dataset in self.opt.single_label_dataset:
torch.save(self.total_model.state_dict(), os.path.join(
self.save_path + 'combined_model_%s.pth' % (self.opt.mode)))
elif self.opt.dataset in self.opt.multi_label_dataset:
torch.save(self.total_model.state_dict(), os.path.join(
self.save_path + 'combined_model_%s_%s.pth' % (self.opt.mode, self.opt.original_label)))
print("--------------")
print("Done training")
print("Best accuracy:", best_accuracy)
opt = parse_option()
device = 'cuda' if torch.cuda.is_available() else 'cpu'
print("Using device:", device)
torch.set_num_threads(1)
dataset = GetDataLoader(opt)
target_train_loader, target_test_loader, shadow_train_loader, shadow_test_loader = dataset.get_data_supervised()
if opt.mode == "target":
train_loader, test_loader = target_train_loader, target_test_loader,
elif opt.mode == "shadow":
train_loader, test_loader = shadow_train_loader, shadow_test_loader
encoder_model = _load_encoder_model(opt)
classifier_model = _load_classifier_model(opt)
total_evaluator = SimCLR_linear_model_evaluator(
encoder=encoder_model, classifier=classifier_model, opt=opt)
total_evaluator.train(train_loader, test_loader)
with open("log/SimCLR_result_%s.txt" % opt.task, "a") as wf:
wf.write("finish SimCLR linear training dataset: %s, model:%s, mode: %s\n" % (
opt.dataset, opt.model, opt.mode))
print("Finish")