-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathMIA_adv_simclr.py
259 lines (208 loc) · 10.4 KB
/
MIA_adv_simclr.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
import torch
from models.resnet_simclr import ResNetSimCLR, LinearClassifier, CombineModel
from models.attack_model import MLP_CE
from utils.dataset_parser.dataset_loader import GetDataLoader
from utils.mia.attackTraining import attackTraining
from utils.mia.metric_based_attack import AttackTrainingMetric
from utils.mia.label_only_attack import AttackLabelOnly
import numpy as np
import time
import argparse
import os
torch.manual_seed(0)
torch.set_num_threads(1)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
np.random.seed(0)
def parse_option():
parser = argparse.ArgumentParser('argument for training')
parser.add_argument('--batch_size', type=int, default=512,
help='batch_size')
parser.add_argument('--num_workers', type=int, default=2,
help='num of workers to use')
parser.add_argument('--epochs', type=int, default=100,
help='number of training epochs')
# optimization
parser.add_argument('--learning_rate', type=float, default=0.05,
help='learning rate')
# model dataset
parser.add_argument('--model', type=str, default='resnet18')
parser.add_argument('--dataset', type=str, default='UTKFace',
help='dataset')
parser.add_argument('--data_path', type=str, default='data/',
help='data_path')
parser.add_argument('--mode', type=str, default='target',
help='control using target dataset or shadow dataset (for membership inference attack)')
parser.add_argument('--mean', type=str,
help='mean of dataset in path in form of str tuple')
parser.add_argument('--std', type=str,
help='std of dataset in path in form of str tuple')
parser.add_argument('--data_folder', type=str,
default=None, help='path to custom dataset')
parser.add_argument('--size', type=int, default=32,
help='parameter for RandomResizedCrop')
# method
parser.add_argument('--method', type=str, default='SimCLR',
choices=['SupCon', 'SimCLR', "CE"], help='choose method')
parser.add_argument('--projection_head_out_dim', type=int, default=256,
help='xxx')
# temperature
parser.add_argument('--temp', type=float, default=0.07,
help='temperature for loss function')
# other setting
parser.add_argument('--cosine', action='store_true',
help='using cosine annealing')
parser.add_argument('--syncBN', action='store_true',
help='using synchronized batch normalization')
parser.add_argument('--warm', action='store_true',
help='warm-up for large batch training')
parser.add_argument('--trial', type=str, default='0',
help='id for recording multiple runs')
# adv training setting:
parser.add_argument('--adv_training', type=str, default='yes',
choices=["yes", "no"], help='control whether using adv training')
parser.add_argument('--adv_factor', type=int, default=5,
help='parameter for adv training')
parser.add_argument('--adv_image', type=str,
default="augmented", help='original or augmented')
parser.add_argument("--adv_location", type=str,
default="embedding", help='embedding or projection')
# label
parser.add_argument('--original_label', type=str, default='Gender')
parser.add_argument("--aux_label", type=str, default='Race')
parser.add_argument('--single_label_dataset', type=list, default=["CIFAR10", "CIFAR100", "STL10"],
help="single_label_dataset")
parser.add_argument('--multi_label_dataset', type=list, default=["UTKFace", "CelebA", "Place365", "Place100", "Place50", "Place20"],
help="multi_label_dataset")
parser.add_argument('--mia_type', type=str, default="nn-based",
help="nn-based, lebel-only, metric-based")
parser.add_argument('--select_posteriors', type=int, default=-1,
help='how many posteriors we select, if -1, we remains the original setting')
opt = parser.parse_args()
model_encoder_dim_dict = {
"resnet18": 512,
"resnet50": 2048,
"alexnet": 4096,
"vgg16": 4096,
"vgg11": 4096,
"mobilenet": 1280,
"cnn": 512,
}
dataset_class_dict = {
"STL10": 10,
"CIFAR10": 10,
"CIFAR100": 100,
"UTKFace": 2,
"CelebA": 2,
"Place365": 2,
"Place100": 2,
"Place50": 2,
"Place20": 2,
}
opt.n_class = dataset_class_dict[opt.dataset]
opt.encoder_dim = model_encoder_dim_dict[opt.model]
return opt
def _load_encoder_model(opt):
model = ResNetSimCLR(
base_model=opt.model, encoder_dim=opt.encoder_dim, out_dim=opt.projection_head_out_dim)
model = model.to(device)
return model
def _load_classifier_model(opt):
n_features = opt.encoder_dim
n_classes = opt.n_class
model = LinearClassifier(n_features, n_classes)
model = model.to(device)
return model
def _load_model(model, checkpoint_path):
state_dict = torch.load(checkpoint_path, map_location=torch.device('cpu'))
model.load_state_dict(state_dict)
model = model.to(device)
return model
def write_res(opt, wf, attack_name, res):
line = "%s,%s,%s,%s,%s," % (
opt.dataset, opt.model, opt.method, opt.original_label, opt.aux_label)
line += "%s," % attack_name
line += ",".join(["%.3f" % (row) for row in res])
line += "\n"
wf.write(line)
opt = parse_option()
device = 'cuda' if torch.cuda.is_available() else 'cpu'
print("Using device:", device)
suffix = ""
if opt.dataset in opt.multi_label_dataset:
suffix = "_%s" % (opt.original_label)
save_path = "./save/%s/model_%s_bs_%s_dataset_%s/" % (
opt.method, opt.model, opt.batch_size, opt.dataset)
target_model = 'combined_model_%s_with_adv_factor_%s_advimage_%s_adv_location_%s_%s_%s.pth' \
% ("target", opt.adv_factor, opt.adv_image, opt.adv_location, opt.original_label, opt.aux_label)
shadow_model = 'combined_model_%s_with_adv_factor_%s_advimage_%s_adv_location_%s_%s_%s.pth' \
% ("shadow", opt.adv_factor, opt.adv_image, opt.adv_location, opt.original_label, opt.aux_label)
target_path = save_path + target_model
shadow_path = save_path + shadow_model
s = GetDataLoader(opt)
target_train_loader, target_test_loader, shadow_train_loader, shadow_test_loader = s.get_data_supervised()
target_encoder = _load_encoder_model(opt)
target_classifier = _load_classifier_model(opt)
if opt.mia_type == "label-only":
return_type = "output"
else:
return_type = "output+embedding"
target_combine_model = CombineModel(
target_encoder, target_classifier, return_type=return_type)
target_combine_model = _load_model(target_combine_model, target_path)
shadow_encoder = _load_encoder_model(opt)
shadow_classifier = _load_classifier_model(opt)
shadow_combine_model = CombineModel(
shadow_encoder, shadow_classifier, return_type=return_type)
shadow_combine_model = _load_model(shadow_combine_model, shadow_path)
attack_model = MLP_CE()
if opt.mia_type == "nn-based":
attack = attackTraining(opt, target_train_loader, target_test_loader,
shadow_train_loader, shadow_test_loader, target_combine_model, shadow_combine_model, attack_model, device)
attack.parse_dataset()
acc_train = 0
acc_test = 0
epoch_train = opt.epochs
train_acc, test_acc = attack.train(epoch_train) # train 100 epoch
target_train_acc, target_test_acc, shadow_train_acc, shadow_test_acc = attack.original_performance
with open("log/model/exp_attack/mia_update_adv_simclr.txt", "a") as wf:
res = [opt.adv_factor, epoch_train, target_train_acc, target_test_acc,
shadow_train_acc, shadow_test_acc, train_acc, test_acc]
write_res(opt, wf, "NN-based", res)
elif opt.mia_type == "metric-based":
attack = AttackTrainingMetric(opt, target_train_loader, target_test_loader,
shadow_train_loader, shadow_test_loader, target_combine_model, shadow_combine_model, attack_model, device)
attack.parse_dataset()
acc_train = 0
acc_test = 0
epoch_train = opt.epochs
train_tuple0, test_tuple0, test_results0, train_tuple1, test_tuple1, test_results1, train_tuple2, test_tuple2, test_results2, train_tuple3, test_tuple3, test_results3 = attack.train()
target_train_acc, target_test_acc, shadow_train_acc, shadow_test_acc = attack.original_performance
with open("log/model/exp_attack/mia_update_adv_simclr.txt", "a") as wf:
res0 = [opt.adv_factor, epoch_train, target_train_acc, target_test_acc,
shadow_train_acc, shadow_test_acc, train_tuple0[0], test_tuple0[0]]
res1 = [opt.adv_factor, epoch_train, target_train_acc, target_test_acc,
shadow_train_acc, shadow_test_acc, train_tuple1[0], test_tuple1[0]]
res2 = [opt.adv_factor, epoch_train, target_train_acc, target_test_acc,
shadow_train_acc, shadow_test_acc, train_tuple2[0], test_tuple2[0]]
res3 = [opt.adv_factor, epoch_train, target_train_acc, target_test_acc,
shadow_train_acc, shadow_test_acc, train_tuple3[0], test_tuple3[0]]
write_res(opt, wf, "Metric-corr", res0)
write_res(opt, wf, "Metric-conf", res1)
write_res(opt, wf, "Metric-ent", res2)
write_res(opt, wf, "Metric-ment", res3)
elif opt.mia_type == "label-only":
attack = AttackLabelOnly(opt, target_train_loader, target_test_loader,
shadow_train_loader, shadow_test_loader, target_combine_model, shadow_combine_model, attack_model, device)
acc_train = 0
acc_test = 0
epoch_train = opt.epochs
attack.searchThreshold(num_samples=-1)
test_tuple = attack.test(num_samples=-1)
target_train_acc, target_test_acc, shadow_train_acc, shadow_test_acc, threshold = attack.original_performance
res = [opt.adv_factor, epoch_train, target_train_acc, target_test_acc, shadow_train_acc,
shadow_test_acc, threshold, test_tuple[0]]
os.makedirs("log/model/exp_attack/", exist_ok=True)
with open("log/model/exp_attack/mia_update_adv_simclr.txt", "a") as wf:
write_res(opt, wf, "Label-only", res)
print("Finish")