Skip to content

Latest commit

 

History

History
74 lines (52 loc) · 2.31 KB

INSTALL.md

File metadata and controls

74 lines (52 loc) · 2.31 KB

Installation

The code was tested on Ubuntu 16.04, with Anaconda Python 3.6 and PyTorch v0.4.1. NVIDIA GPUs are needed for both training and testing. After install Anaconda:

  1. [Optional but recommended] create a new conda environment.

    conda create --name CenterNet python=3.6
    

    And activate the environment.

    conda activate CenterNet
    
  2. Install pytorch0.4.1:

    conda install pytorch=0.4.1 torchvision -c pytorch
    

    And disable cudnn batch normalization(Due to this issue).

    # PYTORCH=/path/to/pytorch # usually ~/anaconda3/envs/CenterNet/lib/python3.6/site-packages/
    # for pytorch v0.4.0
    sed -i "1194s/torch\.backends\.cudnn\.enabled/False/g" ${PYTORCH}/torch/nn/functional.py
    # for pytorch v0.4.1
    sed -i "1254s/torch\.backends\.cudnn\.enabled/False/g" ${PYTORCH}/torch/nn/functional.py
    

    For other pytorch version, you can manually open torch/nn/functional.py and find the line with torch.batch_norm and replace the torch.backends.cudnn.enabled with False. We observed slight worse training results without doing so.

  3. Install COCOAPI:

    # COCOAPI=/path/to/clone/cocoapi
    git clone https://github.com/cocodataset/cocoapi.git $COCOAPI
    cd $COCOAPI/PythonAPI
    make
    python setup.py install --user
    
  4. Clone this repo:

    CenterNet_ROOT=/path/to/clone/CenterNet
    git clone https://github.com/xingyizhou/CenterNet $CenterNet_ROOT
    
  5. Install the requirements

    pip install -r requirements.txt
    
  6. Compile deformable convolutional (from DCNv2).

    cd $CenterNet_ROOT/src/lib/models/networks/DCNv2
    ./make.sh
    
  7. [Optional, only required if you are using extremenet or multi-scale testing] Compile NMS if your want to use multi-scale testing or test ExtremeNet.

    cd $CenterNet_ROOT/src/lib/external
    make
    
  8. Download pertained models for detection or pose estimation and move them to $CenterNet_ROOT/models/. More models can be found in Model zoo.