Skip to content

Latest commit

 

History

History
55 lines (45 loc) · 3.42 KB

readme.md

File metadata and controls

55 lines (45 loc) · 3.42 KB

TuSimple Lane Detection Challenge - Training Dataset

Description

The lane marking is the main component on the highway. It instructs the vehicles interactively and safely drive on the highway. Lane detection is a critical task in autonomous driving, which provides localization information to the control of the car. We provide video clips for this task, and the last frame of each clip contains labelled lanes. The video clip can help algorithms to infer better lane detection results.

Dataset Size

3626 video clips, 3626 labelled frames. Information of each clip: 20 frames for each one.

Directory Structure:

	|
	|----readme.md  				# description
	|
	|----clips/ 					# video clips, 3626 clips
	|------|
	|------|----some_clip/			# Sequential images for the clip, 20 frames
	|------|----...
	|
	|----label_data_0313.json			# Label data for lanes
	|----label_data_0531.json			# Label data for lanes
	|----label_data_0601.json			# Label data for lanes

Label Data Format

Each json line in 'label_data.json' is the label data for the last (20th) frame of this clip.

Format

    {
      'raw_file': str. Clip file path.
      'lanes': list. A list of lanes. For each list of one lane, the elements are width values on image.
      'h_samples': list. A list of height values corresponding to the 'lanes', which means len(h_samples) == len(lanes[i])
    }

Actually there will be at most 5 lane markings in lanes. We expect at most 4 lane markings (current lane and left/right lanes). The extra lane is used when changing lane because it is confused to tell which lane is the current lane.

The polylines are orgnized by the same distance gap ('h_sample' in each label data) from the recording car. It means you can pair each element in one lane and h_samples to get position of lane marking on images.

Also, the lanes are around the center of sight, which we encourage the autonomous driving vehicle to focus on the current lane and left/right lanes. These lanes are essential for the control of the car.

For example,

{
  "lanes": [
        [-2, -2, -2, -2, 632, 625, 617, 609, 601, 594, 586, 578, 570, 563, 555, 547, 539, 532, 524, 516, 508, 501, 493, 485, 477, 469, 462, 454, 446, 438, 431, 423, 415, 407, 400, 392, 384, 376, 369, 361, 353, 345, 338, 330, 322, 314, 307, 299],
        [-2, -2, -2, -2, 719, 734, 748, 762, 777, 791, 805, 820, 834, 848, 863, 877, 891, 906, 920, 934, 949, 963, 978, 992, 1006, 1021, 1035, 1049, 1064, 1078, 1092, 1107, 1121, 1135, 1150, 1164, 1178, 1193, 1207, 1221, 1236, 1250, 1265, -2, -2, -2, -2, -2],
        [-2, -2, -2, -2, -2, 532, 503, 474, 445, 416, 387, 358, 329, 300, 271, 241, 212, 183, 154, 125, 96, 67, 38, 9, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2],
        [-2, -2, -2, 781, 822, 862, 903, 944, 984, 1025, 1066, 1107, 1147, 1188, 1229, 1269, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2]
       ],
  "h_samples": [240, 250, 260, 270, 280, 290, 300, 310, 320, 330, 340, 350, 360, 370, 380, 390, 400, 410, 420, 430, 440, 450, 460, 470, 480, 490, 500, 510, 520, 530, 540, 550, 560, 570, 580, 590, 600, 610, 620, 630, 640, 650, 660, 670, 680, 690, 700, 710],
  "raw_file": "path_to_clip"
}

-2 in lanes means on some h_sample, there is no existing lane marking. The first existing point in the first lane is (632, 280).