Skip to content

Latest commit

 

History

History
23 lines (13 loc) · 1.88 KB

find-top-100-words.md

File metadata and controls

23 lines (13 loc) · 1.88 KB

如何从大量数据中找出高频词?

题目描述

有一个 1GB 大小的文件,文件里每一行是一个词,每个词的大小不超过 16B,内存大小限制是 1MB,要求返回频数最高的 100 个词(Top 100)。

解答思路

由于内存限制,我们依然无法直接将大文件的所有词一次读到内存中。因此,同样可以采用分治策略,把一个大文件分解成多个小文件,保证每个文件的大小小于 1MB,进而直接将单个小文件读取到内存中进行处理。

思路如下

首先遍历大文件,对遍历到的每个词 x,执行 hash(x) % 5000 ,将结果为 i 的词存放到文件 ai 中。遍历结束后,我们可以得到 5000 个小文件。每个小文件的大小为 200KB 左右。如果有的小文件大小仍然超过 1MB,则采用同样的方式继续进行分解。

接着统计每个小文件中出现频数最高的 100 个词。最简单的方式是使用 HashMap 来实现。其中 key 为词,value 为该词出现的频率。具体方法是:对于遍历到的词 x,如果在 map 中不存在,则执行 map.put(x, 1) ;若存在,则执行 map.put(x, map.get(x)+1) ,将该词频数加 1。

上面我们统计了每个小文件单词出现的频数。接下来,我们可以通过维护一个小顶堆来找出所有词中出现频数最高的 100 个。具体方法是:依次遍历每个小文件,构建一个小顶堆,堆大小为 100。如果遍历到的词的出现次数大于堆顶词的出现次数,则用新词替换堆顶的词,然后重新调整为小顶堆,遍历结束后,小顶堆上的词就是出现频数最高的 100 个词。

方法总结

  1. 分而治之,进行哈希取余;
  2. 使用 HashMap 统计频数;
  3. 求解最大的 TopN 个,用小顶堆;求解最小的 TopN 个,用大顶堆