forked from johannesgerer/jburkardt-f
-
Notifications
You must be signed in to change notification settings - Fork 1
/
minpack.html
300 lines (264 loc) · 8.68 KB
/
minpack.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
<html>
<head>
<title>
MINPACK - Least Squares Minimization
</title>
</head>
<body bgcolor="#EEEEEE" link="#CC0000" alink="#FF3300" vlink="#000055">
<h1 align = "center">
MINPACK <br> Least Squares Minimization
</h1>
<hr>
<p>
<b>MINPACK</b>
is a FORTRAN90 library which
solves systems of nonlinear equations, or carries out the
least squares minimization of the residual of a set of linear or nonlinear equations.
</p>
<p>
<b>MINPACK</b> includes software for solving nonlinear equations and
nonlinear least squares problems. Five algorithmic paths each include
a core subroutine and an easy-to-use driver. The algorithms proceed
either from an analytic specification of the Jacobian matrix or
directly from the problem functions. The paths include facilities for
systems of equations with a banded Jacobian matrix, for least squares
problems with a large amount of data, and for checking the consistency
of the Jacobian matrix with the functions.
</p>
<p>
Given a set of N nonlinear equations in N unknowns, F(X) = 0,
Powell's method is used to seek a solution X.
</p>
<p>
Given a set of M nonlinear functions in N unknowns, F(X),
the Levenberg-Marquardt method is used to seek an X which minimizes
the L2 norm of the residual ||F(X)||.
</p>
<p>
The user supplies a subroutine to evaluate the nonlinear function;
the jacobian matrix dFi(X)/dXj may also be supplied by the user
in a subroutine, or approximated by finite differences.
</p>
<h3 align = "center">
Languages:
</h3>
<p>
<b>MINPACK</b> is available in
<a href = "../../cpp_src/minpack/minpack.html">a C++ version</a> and
<a href = "../../f77_src/minpack/minpack.html">a FORTRAN77 version</a> and
<a href = "../../f_src/minpack/minpack.html">a FORTRAN90 version</a>.
</p>
<h3 align = "center">
Related Data and Programs:
</h3>
<p>
<a href = "../../f_src/bvls/bvls.html">
BVLS</a>,
a FORTRAN90 library which
applies least squares methods to solve a linear system for which
lower and upper constraints may have been placed on every variable.
</p>
<p>
<a href = "../../f_src/dqed/dqed.html">
DQED</a>,
a FORTRAN90 library which
solves constrained least squares problems.
</p>
<p>
<a href = "../../f_src/nl2sol/nl2sol.html">
NL2SOL</a>,
a FORTRAN90 library which
implements an adaptive nonlinear least-squares algorithm.
</p>
<p>
<a href = "../../f_src/nms/nms.html">
NMS</a>,
a FORTRAN90 library which
includes a wide variety of numerical software, including
solvers for linear systems of equations, interpolation of data,
numerical quadrature, linear least squares data fitting,
the solution of nonlinear equations, ordinary differential equations,
optimization and nonlinear least squares, simulation and random numbers,
trigonometric approximation and Fast Fourier Transforms.
</p>
<p>
<a href = "../../f_src/praxis/praxis.html">
PRAXIS</a>,
a FORTRAN90 library which
minimizes a scalar function of several variables.
</p>
<p>
<a href = "../../f_src/qr_solve/qr_solve.html">
QR_SOLVE</a>,
a FORTRAN90 library which
computes the least squares solution of a linear system A*x=b.
</p>
<p>
<a href = "../../f_src/slatec/slatec.html">
SLATEC</a> ,
a FORTRAN90 library which
includes MINPACK.
</p>
<p>
<a href = "../../f_src/test_opt/test_opt.html">
TEST_OPT</a>,
a FORTRAN90 library which
defines test problems for the minimization of a scalar function
of several variables.
</p>
<p>
<a href = "../../f_src/test_optimization/test_optimization.html">
TEST_OPTIMIZATION</a>,
a FORTRAN90 library which
defines test problems for the minimization of a scalar function
of several variables, as described by Molga and Smutnicki.
</p>
<p>
<a href = "../../f_src/toms611/toms611.html">
TOMS611</a>,
a FORTRAN90 library which
seeks the minimizer of a scalar functional of multiple variables.
</p>
<h3 align = "center">
Reference:
</h3>
<p>
<ol>
<li>
Jorge More, Burton Garbow, Kenneth Hillstrom,<br>
User Guide for MINPACK-1,<br>
Technical Report ANL-80-74,<br>
Argonne National Laboratory, 1980.
</li>
<li>
Jorge More, Danny Sorenson, Burton Garbow, Kenneth Hillstrom,<br>
The MINPACK Project,<br>
in Sources and Development of Mathematical Software,<br>
edited by Wayne Cowell,<br>
Prentice-Hall, 1984,<br>
ISBN: 0-13-823501-5,<br>
LC: QA76.95.S68.
</li>
</ol>
</p>
<h3 align = "center">
Source Code:
</h3>
<p>
<ul>
<li>
<a href = "minpack.f90">minpack.f90</a>, the source code;
</li>
<li>
<a href = "minpack.csh">minpack.csh</a>,
commands to compile the source code;
</li>
</ul>
</p>
<h3 align = "center">
Examples and Tests:
</h3>
<p>
<ul>
<li>
<a href = "minpack_prb.f90">minpack_prb.f90</a>, sample calling code;
</li>
<li>
<a href = "minpack_prb.csh">minpack_prb.csh</a>,
commands to compile, link and run the sample calling code;
</li>
<li>
<a href = "minpack_prb_output.txt">minpack_prb_output.txt</a>, sample output;
</li>
</ul>
</p>
<h3 align = "center">
List of Routines:
</h3>
<p>
<ul>
<li>
<b>CHKDER</b> checks the gradients of M functions of N variables.
</li>
<li>
<b>DOGLEG</b> finds the minimizing combination of Gauss-Newton and gradient steps.
</li>
<li>
<b>ENORM</b> computes the Euclidean norm of a vector.
</li>
<li>
<b>ENORM2</b> computes the Euclidean norm of a vector.
</li>
<li>
<b>FDJAC1</b> estimates an N by N jacobian matrix using forward differences.
</li>
<li>
<b>FDJAC2</b> estimates an M by N jacobian matrix using forward differences.
</li>
<li>
<b>HYBRD</b> seeks a zero of N nonlinear equations in N variables.
</li>
<li>
<b>HYBRD1</b> seeks a zero of N nonlinear equations in N variables.
</li>
<li>
<b>HYBRJ</b> seeks a zero of N nonlinear equations in N variables.
</li>
<li>
<b>HYBRJ1</b> seeks a zero of N nonlinear equations in N variables by Powell's method.
</li>
<li>
<b>LMDER</b> minimizes M functions in N variables by the Levenberg-Marquardt method.
</li>
<li>
<b>LMDER1</b> minimizes M functions in N variables by the Levenberg-Marquardt method.
</li>
<li>
<b>LMDIF</b> minimizes M functions in N variables by the Levenberg-Marquardt method.
</li>
<li>
<b>LMDIF1</b> minimizes M functions in N variables using the Levenberg-Marquardt method.
</li>
<li>
<b>LMPAR</b> computes a parameter for the Levenberg-Marquardt method.
</li>
<li>
<b>LMSTR</b> minimizes M functions in N variables using the Levenberg-Marquardt method.
</li>
<li>
<b>LMSTR1</b> minimizes M functions in N variables using the Levenberg-Marquardt method.
</li>
<li>
<b>QFORM</b> produces the explicit QR factorization of a matrix.
</li>
<li>
<b>QRFAC</b> computes a QR factorization using Householder transformations.
</li>
<li>
<b>QRSOLV</b> solves a rectangular linear system A*x=b in the least squares sense.
</li>
<li>
<b>R1MPYQ</b> computes A*Q, where Q is the product of Householder transformations.
</li>
<li>
<b>R1UPDT</b> re-triangularizes a matrix after a rank one update.
</li>
<li>
<b>RWUPDT</b> computes the decomposition of a triangular matrix augmented by one row.
</li>
<li>
<b>TIMESTAMP</b> prints the current YMDHMS date as a time stamp.
</li>
</ul>
</p>
<p>
You can go up one level to <a href = "../f_src.html">
the FORTRAN90 source codes</a>.
</p>
<hr>
<i>
Last revised on 07 April 2010.
</i>
<!-- John Burkardt -->
</body>
</html>