forked from johannesgerer/jburkardt-f
-
Notifications
You must be signed in to change notification settings - Fork 1
/
blas1_d.html
285 lines (248 loc) · 7.4 KB
/
blas1_d.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
<html>
<head>
<title>
BLAS1_D - Basic Linear Algebra Subprograms - Level 1 -
Double Precision Real Arithmetic
</title>
</head>
<body bgcolor="#EEEEEE" link="#CC0000" alink="#FF3300" vlink="#000055">
<h1 align = "center">
BLAS1_D <br>
Basic Linear Algebra Subprograms <br>
Level 1 <br>
Double Precision Real Arithmetic
</h1>
<hr>
<p>
<b>BLAS1_D</b>
is a FORTRAN90 library which
implements the Level 1
<b>BLAS</b>, or Basic Linear Algebra Subprograms in double precision real arithmetic.
</p>
<p>
The <b>BLAS</b> are a small core library of linear algebra utilities,
which can be highly optimized for various architectures. Software
that relies on the <b>BLAS</b> is thus highly portable, and will typically
run very efficiently.
</p>
<p>
The Level 1 BLAS are primarily for use in vector operations.
In certain cases, they may also be used to operate on the rows
or columns of a two-dimensional array.
</p>
<h3 align = "center">
Licensing:
</h3>
<p>
The computer code and data files described and made available on this web page
are distributed under
<a href = "../../txt/gnu_lgpl.txt">the GNU LGPL license.</a>
</p>
<h3 align = "center">
Languages:
</h3>
<p>
<b>BLAS1_D</b> is available in
<a href = "../../c_src/blas1_d/blas1_d.html">a C version</a> and
<a href = "../../cpp_src/blas1_d/blas1_d.html">a C++ version</a> and
<a href = "../../f77_src/blas1_d/blas1_d.html">a FORTRAN77 version</a> and
<a href = "../../f_src/blas1_d/blas1_d.html">a FORTRAN90 version</a> and
<a href = "../../m_src/blas1_d/blas1_d.html">a MATLAB version</a>.
</p>
<h3 align = "center">
Related Data and Programs:
</h3>
<p>
<a href = "../../f_src/blas1/blas1.html">
BLAS1</a>,
a FORTRAN90 library which
contains basic linear algebra routines for vector-vector operations,
combining the single and double precision, real and complex arithmetic
libraries.
</p>
<p>
<a href = "../../f_src/blas1_c/blas1_c.html">
BLAS1_C</a>,
a FORTRAN90 library which
is a version of <b>BLAS1</b> for single precision complex arithmetic.
</p>
<p>
<a href = "../../f_src/blas1_s/blas1_s.html">
BLAS1_S</a>,
a FORTRAN90 library which
is a version of <b>BLAS1</b> for single precision real arithmetic.
</p>
<p>
<a href = "../../f_src/blas1_z/blas1_z.html">
BLAS1_Z</a>,
a FORTRAN90 library which
is a version of <b>BLAS1</b> for double precision complex arithmetic.
</p>
<p>
<a href = "../../f_src/blas2/blas2.html">
BLAS2</a>,
a FORTRAN90 library which
handles matrix-vector operations.
</p>
<p>
<a href = "../../f_src/blas3/blas3.html">
BLAS3</a>,
a FORTRAN90 library which
handles matrix-matrix operations.
</p>
<p>
<a href = "../../cpp_src/gsl/gsl.html">
GSL</a>,
a C++ library which
includes an implementation
of the <b>BLAS1</b> routines.
</p>
<p>
<a href = "../../f_src/lapack_examples/lapack_examples.html">
LAPACK_EXAMPLES</a>,
a FORTRAN90 program which
demonstrates the use of the LAPACK linear algebra library.
</p>
<p>
<a href = "../../f_src/linpack_d/linpack_d.html">
LINPACK_D</a>,
a FORTRAN90 library which
is a linear algebra package using double precision real arithmetic.
</p>
<p>
<a href = "../../f_src/nms/nms.html">
NMS</a>,
a FORTRAN90 library which
includes <b>BLAS1</b>.
</p>
<p>
<a href = "../../f_src/slatec/slatec.html">
SLATEC</a>,
a FORTRAN90 library which
includes <b>BLAS1</b>.
</p>
<h3 align = "center">
Reference:
</h3>
<p>
<ol>
<li>
Edward Anderson, Zhaojun Bai, Christian Bischof, Susan Blackford,
James Demmel, Jack Dongarra, Jeremy Du Croz, Anne Greenbaum,
Sven Hammarling, Alan McKenney, Danny Sorensen,<br>
LAPACK User's Guide,<br>
Third Edition,<br>
SIAM, 1999,<br>
ISBN: 0898714478,<br>
LC: QA76.73.F25L36.
</li>
<li>
Thomas Coleman, Charles vanLoan,<br>
Handbook for Matrix Computations,<br>
SIAM, 1988,<br>
ISBN13: 978-0-898712-27-8,<br>
LC: QA188.C65.
</li>
<li>
Jack Dongarra, Jim Bunch, Cleve Moler, Pete Stewart,<br>
LINPACK User's Guide,<br>
SIAM, 1979,<br>
ISBN13: 978-0-898711-72-1,<br>
LC: QA214.L56.
</li>
<li>
Charles Lawson, Richard Hanson, David Kincaid, Fred Krogh,<br>
Algorithm 539:
Basic Linear Algebra Subprograms for Fortran Usage,<br>
ACM Transactions on Mathematical Software,<br>
Volume 5, Number 3, September 1979, pages 308-323.
</li>
</ol>
</p>
<h3 align = "center">
Source Code:
</h3>
<p>
<ul>
<li>
<a href = "blas1_d.f90">blas1_d.f90</a>, the source code;
</li>
<li>
<a href = "blas1_d.csh">blas1_d.csh</a>, commands to compile
the source code;
</li>
</ul>
</p>
<h3 align = "center">
Examples and Tests:
</h3>
<p>
<ul>
<li>
<a href = "blas1_d_prb.f90">blas1_d_prb.f90</a>,
a sample calling program;
</li>
<li>
<a href = "blas1_d_prb.csh">blas1_d_prb.csh</a>, commands to
compile, link, load and run the calling program;
</li>
<li>
<a href = "blas1_d_prb_output.txt">blas1_d_prb_output.txt</a>,
the output file.
</li>
</ul>
</p>
<h3 align = "center">
List of Routines:
</h3>
<p>
<ul>
<li>
<b>DASUM</b> takes the sum of the absolute values of a double precision vector.
</li>
<li>
<b>DAXPY</b> computes double precision constant times a vector plus a vector.
</li>
<li>
<b>DCOPY</b> copies a double precision vector X to a vector Y.
</li>
<li>
<b>DDOT</b> forms the dot product of two double precision vectors.
</li>
<li>
<b>DNRM2</b> returns the euclidean norm of a double precision vector.
</li>
<li>
<b>DROT</b> applies a double precision plane rotation.
</li>
<li>
<b>DROTG</b> constructs a double precision Givens plane rotation.
</li>
<li>
<b>DSCAL</b> scales a double precision vector by a constant.
</li>
<li>
<b>DSWAP</b> interchanges two double precision vectors.
</li>
<li>
<b>IDAMAX</b> indexes the double precision array element of maximum absolute value.
</li>
<li>
<b>LSAME</b> returns TRUE if CA is the same letter as CB regardless of case.
</li>
<li>
<b>XERBLA</b> is an error handler for the LAPACK routines.
</li>
</ul>
</p>
<p>
You can go up one level to <a href = "../f_src.html">
the FORTRAN90 source codes</a>.
</p>
<hr>
<i>
Last revised on 28 March 2007.
</i>
<!-- John Burkardt -->
</body>
</html>