forked from PaddlePaddle/PaddleRec
-
Notifications
You must be signed in to change notification settings - Fork 0
/
model.py
221 lines (195 loc) · 9.03 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import numpy as np
import paddle.fluid as fluid
from paddlerec.core.utils import envs
from paddlerec.core.model import ModelBase
class Model(ModelBase):
def __init__(self, config):
ModelBase.__init__(self, config)
def _init_hyper_parameters(self):
self.is_distributed = True if envs.get_fleet_mode().upper(
) == "PSLIB" else False
self.sparse_feature_number = envs.get_global_env(
"hyper_parameters.sparse_feature_number")
self.sparse_feature_dim = envs.get_global_env(
"hyper_parameters.sparse_feature_dim")
self.neg_num = envs.get_global_env("hyper_parameters.neg_num")
self.with_shuffle_batch = envs.get_global_env(
"hyper_parameters.with_shuffle_batch")
self.learning_rate = envs.get_global_env(
"hyper_parameters.optimizer.learning_rate")
self.decay_steps = envs.get_global_env(
"hyper_parameters.optimizer.decay_steps")
self.decay_rate = envs.get_global_env(
"hyper_parameters.optimizer.decay_rate")
def input_data(self, is_infer=False, **kwargs):
if is_infer:
analogy_a = fluid.data(
name="analogy_a", shape=[None, 1], lod_level=1, dtype='int64')
analogy_b = fluid.data(
name="analogy_b", shape=[None, 1], lod_level=1, dtype='int64')
analogy_c = fluid.data(
name="analogy_c", shape=[None, 1], lod_level=1, dtype='int64')
analogy_d = fluid.data(
name="analogy_d", shape=[None, 1], dtype='int64')
return [analogy_a, analogy_b, analogy_c, analogy_d]
input_word = fluid.data(
name="input_word", shape=[None, 1], lod_level=1, dtype='int64')
true_word = fluid.data(
name='true_label', shape=[None, 1], lod_level=1, dtype='int64')
if self.with_shuffle_batch:
return [input_word, true_word]
neg_word = fluid.data(
name="neg_label", shape=[None, self.neg_num], dtype='int64')
return [input_word, true_word, neg_word]
def net(self, inputs, is_infer=False):
if is_infer:
self.infer_net(inputs)
return
def embedding_layer(input,
table_name,
initializer_instance=None,
sequence_pool=False):
emb = fluid.embedding(
input=input,
is_sparse=True,
is_distributed=self.is_distributed,
size=[self.sparse_feature_number, self.sparse_feature_dim],
param_attr=fluid.ParamAttr(
name=table_name, initializer=initializer_instance), )
if sequence_pool:
emb = fluid.layers.sequence_pool(
input=emb, pool_type='average')
return emb
init_width = 1.0 / self.sparse_feature_dim
emb_initializer = fluid.initializer.Uniform(-init_width, init_width)
emb_w_initializer = fluid.initializer.Constant(value=0.0)
input_emb = embedding_layer(inputs[0], "emb", emb_initializer, True)
input_emb = fluid.layers.squeeze(input=input_emb, axes=[1])
true_emb_w = embedding_layer(inputs[1], "emb_w", emb_w_initializer,
True)
true_emb_w = fluid.layers.squeeze(input=true_emb_w, axes=[1])
if self.with_shuffle_batch:
neg_emb_w_list = []
for i in range(self.neg_num):
neg_emb_w_list.append(
fluid.contrib.layers.shuffle_batch(
true_emb_w)) # shuffle true_word
neg_emb_w_concat = fluid.layers.concat(neg_emb_w_list, axis=0)
neg_emb_w = fluid.layers.reshape(
neg_emb_w_concat,
shape=[-1, self.neg_num, self.sparse_feature_dim])
else:
neg_emb_w = embedding_layer(inputs[2], "emb_w", emb_w_initializer)
true_logits = fluid.layers.reduce_sum(
fluid.layers.elementwise_mul(input_emb, true_emb_w),
dim=1,
keep_dim=True)
input_emb_re = fluid.layers.reshape(
input_emb, shape=[-1, 1, self.sparse_feature_dim])
neg_matmul = fluid.layers.matmul(
input_emb_re, neg_emb_w, transpose_y=True)
neg_logits = fluid.layers.reshape(neg_matmul, shape=[-1, 1])
logits = fluid.layers.concat([true_logits, neg_logits], axis=0)
label_ones = fluid.layers.fill_constant(
shape=[fluid.layers.shape(true_logits)[0], 1],
value=1.0,
dtype='float32')
label_zeros = fluid.layers.fill_constant(
shape=[fluid.layers.shape(neg_logits)[0], 1],
value=0.0,
dtype='float32')
label = fluid.layers.concat([label_ones, label_zeros], axis=0)
label.stop_gradient = True
loss = fluid.layers.log_loss(fluid.layers.sigmoid(logits), label)
avg_cost = fluid.layers.reduce_sum(loss)
global_right_cnt = fluid.layers.create_global_var(
name="global_right_cnt",
persistable=True,
dtype='float32',
shape=[1],
value=0)
global_total_cnt = fluid.layers.create_global_var(
name="global_total_cnt",
persistable=True,
dtype='float32',
shape=[1],
value=0)
global_right_cnt.stop_gradient = True
global_total_cnt.stop_gradient = True
self._cost = avg_cost
self._metrics["LOSS"] = avg_cost
def optimizer(self):
optimizer = fluid.optimizer.SGD(
learning_rate=fluid.layers.exponential_decay(
learning_rate=self.learning_rate,
decay_steps=self.decay_steps,
decay_rate=self.decay_rate,
staircase=True))
return optimizer
def infer_net(self, inputs):
def embedding_layer(input,
table_name,
initializer_instance=None,
sequence_pool=False):
emb = fluid.embedding(
input=input,
size=[self.sparse_feature_number, self.sparse_feature_dim],
param_attr=table_name)
if sequence_pool:
emb = fluid.layers.sequence_pool(
input=emb, pool_type='average')
return emb
all_label = np.arange(self.sparse_feature_number).reshape(
self.sparse_feature_number).astype('int32')
self.all_label = fluid.layers.cast(
x=fluid.layers.assign(all_label), dtype='int64')
emb_all_label = embedding_layer(self.all_label, "emb")
emb_a = embedding_layer(inputs[0], "emb", sequence_pool=True)
emb_b = embedding_layer(inputs[1], "emb", sequence_pool=True)
emb_c = embedding_layer(inputs[2], "emb", sequence_pool=True)
target = fluid.layers.elementwise_add(
fluid.layers.elementwise_sub(emb_b, emb_a), emb_c)
emb_all_label_l2 = fluid.layers.l2_normalize(x=emb_all_label, axis=1)
dist = fluid.layers.matmul(
x=target, y=emb_all_label_l2, transpose_y=True)
values, pred_idx = fluid.layers.topk(input=dist, k=4)
label = fluid.layers.expand(inputs[3], expand_times=[1, 4])
label_ones = fluid.layers.fill_constant_batch_size_like(
label, shape=[-1, 1], value=1.0, dtype='float32')
right_cnt = fluid.layers.reduce_sum(input=fluid.layers.cast(
fluid.layers.equal(pred_idx, label), dtype='float32'))
total_cnt = fluid.layers.reduce_sum(label_ones)
global_right_cnt = fluid.layers.create_global_var(
name="global_right_cnt",
persistable=True,
dtype='float32',
shape=[1],
value=0)
global_total_cnt = fluid.layers.create_global_var(
name="global_total_cnt",
persistable=True,
dtype='float32',
shape=[1],
value=0)
global_right_cnt.stop_gradient = True
global_total_cnt.stop_gradient = True
tmp1 = fluid.layers.elementwise_add(right_cnt, global_right_cnt)
fluid.layers.assign(tmp1, global_right_cnt)
tmp2 = fluid.layers.elementwise_add(total_cnt, global_total_cnt)
fluid.layers.assign(tmp2, global_total_cnt)
acc = fluid.layers.elementwise_div(
global_right_cnt, global_total_cnt, name="total_acc")
self._infer_results['acc'] = acc