forked from PaddlePaddle/PaddleRec
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
executable file
·102 lines (88 loc) · 3.93 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import paddle.fluid as fluid
from paddlerec.core.utils import envs
from paddlerec.core.model import ModelBase
class Model(ModelBase):
def __init__(self, config):
ModelBase.__init__(self, config)
def _init_hyper_parameters(self):
self.trigram_d = envs.get_global_env("hyper_parameters.trigram_d")
self.neg_num = envs.get_global_env("hyper_parameters.neg_num")
self.hidden_layers = envs.get_global_env("hyper_parameters.fc_sizes")
self.hidden_acts = envs.get_global_env("hyper_parameters.fc_acts")
self.learning_rate = envs.get_global_env(
"hyper_parameters.learning_rate")
self.slice_end = envs.get_global_env("hyper_parameters.slice_end")
def input_data(self, is_infer=False, **kwargs):
query = fluid.data(
name="query",
shape=[-1, self.trigram_d],
dtype='float32',
lod_level=0)
doc_pos = fluid.data(
name="doc_pos",
shape=[-1, self.trigram_d],
dtype='float32',
lod_level=0)
if is_infer:
return [query, doc_pos]
doc_negs = [
fluid.data(
name="doc_neg_" + str(i),
shape=[-1, self.trigram_d],
dtype="float32",
lod_level=0) for i in range(self.neg_num)
]
return [query, doc_pos] + doc_negs
def net(self, inputs, is_infer=False):
def fc(data, hidden_layers, hidden_acts, names):
fc_inputs = [data]
for i in range(len(hidden_layers)):
xavier = fluid.initializer.Xavier(
uniform=True,
fan_in=fc_inputs[-1].shape[1],
fan_out=hidden_layers[i])
out = fluid.layers.fc(input=fc_inputs[-1],
size=hidden_layers[i],
act=hidden_acts[i],
param_attr=xavier,
bias_attr=xavier,
name=names[i])
fc_inputs.append(out)
return fc_inputs[-1]
query_fc = fc(inputs[0], self.hidden_layers, self.hidden_acts,
['query_l1', 'query_l2', 'query_l3'])
doc_pos_fc = fc(inputs[1], self.hidden_layers, self.hidden_acts,
['doc_pos_l1', 'doc_pos_l2', 'doc_pos_l3'])
R_Q_D_p = fluid.layers.cos_sim(query_fc, doc_pos_fc)
if is_infer:
self._infer_results["query_doc_sim"] = R_Q_D_p
return
R_Q_D_ns = []
for i in range(len(inputs) - 2):
doc_neg_fc_i = fc(
inputs[i + 2], self.hidden_layers, self.hidden_acts, [
'doc_neg_l1_' + str(i), 'doc_neg_l2_' + str(i),
'doc_neg_l3_' + str(i)
])
R_Q_D_ns.append(fluid.layers.cos_sim(query_fc, doc_neg_fc_i))
concat_Rs = fluid.layers.concat(input=[R_Q_D_p] + R_Q_D_ns, axis=-1)
prob = fluid.layers.softmax(concat_Rs, axis=1)
hit_prob = fluid.layers.slice(
prob, axes=[0, 1], starts=[0, 0], ends=[self.slice_end, 1])
loss = -fluid.layers.reduce_sum(fluid.layers.log(hit_prob))
avg_cost = fluid.layers.mean(x=loss)
self._cost = avg_cost
self._metrics["LOSS"] = avg_cost