Skip to content

Latest commit

 

History

History
543 lines (477 loc) · 17.2 KB

File metadata and controls

543 lines (477 loc) · 17.2 KB

English Version

题目描述

给你两个下标从 0 开始的字符串 sourcetarget ,它们的长度均为 n 并且由 小写 英文字母组成。

另给你两个下标从 0 开始的字符串数组 originalchanged ,以及一个整数数组 cost ,其中 cost[i] 代表将字符串 original[i] 更改为字符串 changed[i] 的成本。

你从字符串 source 开始。在一次操作中,如果 存在 任意 下标 j 满足 cost[j] == z  、original[j] == x 以及 changed[j] == y ,你就可以选择字符串中的 子串 x 并以 z 的成本将其更改为 y 。 你可以执行 任意数量 的操作,但是任两次操作必须满足 以下两个 条件 之一

  • 在两次操作中选择的子串分别是 source[a..b]source[c..d] ,满足 b < c  d < a 。换句话说,两次操作中选择的下标 不相交
  • 在两次操作中选择的子串分别是 source[a..b]source[c..d] ,满足 a == c b == d 。换句话说,两次操作中选择的下标 相同

返回将字符串 source 转换为字符串 target 所需的 最小 成本。如果不可能完成转换,则返回 -1

注意,可能存在下标 ij 使得 original[j] == original[i]changed[j] == changed[i]

 

示例 1:

输入:source = "abcd", target = "acbe", original = ["a","b","c","c","e","d"], changed = ["b","c","b","e","b","e"], cost = [2,5,5,1,2,20]
输出:28
解释:将 "abcd" 转换为 "acbe",执行以下操作:
- 将子串 source[1..1] 从 "b" 改为 "c" ,成本为 5 。
- 将子串 source[2..2] 从 "c" 改为 "e" ,成本为 1 。
- 将子串 source[2..2] 从 "e" 改为 "b" ,成本为 2 。
- 将子串 source[3..3] 从 "d" 改为 "e" ,成本为 20 。
产生的总成本是 5 + 1 + 2 + 20 = 28 。 
可以证明这是可能的最小成本。

示例 2:

输入:source = "abcdefgh", target = "acdeeghh", original = ["bcd","fgh","thh"], changed = ["cde","thh","ghh"], cost = [1,3,5]
输出:9
解释:将 "abcdefgh" 转换为 "acdeeghh",执行以下操作:
- 将子串 source[1..3] 从 "bcd" 改为 "cde" ,成本为 1 。
- 将子串 source[5..7] 从 "fgh" 改为 "thh" ,成本为 3 。可以执行此操作,因为下标 [5,7] 与第一次操作选中的下标不相交。
- 将子串 source[5..7] 从 "thh" 改为 "ghh" ,成本为 5 。可以执行此操作,因为下标 [5,7] 与第一次操作选中的下标不相交,且与第二次操作选中的下标相同。
产生的总成本是 1 + 3 + 5 = 9 。
可以证明这是可能的最小成本。

示例 3:

输入:source = "abcdefgh", target = "addddddd", original = ["bcd","defgh"], changed = ["ddd","ddddd"], cost = [100,1578]
输出:-1
解释:无法将 "abcdefgh" 转换为 "addddddd" 。
如果选择子串 source[1..3] 执行第一次操作,以将 "abcdefgh" 改为 "adddefgh" ,你无法选择子串 source[3..7] 执行第二次操作,因为两次操作有一个共用下标 3 。
如果选择子串 source[3..7] 执行第一次操作,以将 "abcdefgh" 改为 "abcddddd" ,你无法选择子串 source[1..3] 执行第二次操作,因为两次操作有一个共用下标 3 。

 

提示:

  • 1 <= source.length == target.length <= 1000
  • sourcetarget 均由小写英文字母组成
  • 1 <= cost.length == original.length == changed.length <= 100
  • 1 <= original[i].length == changed[i].length <= source.length
  • original[i]changed[i] 均由小写英文字母组成
  • original[i] != changed[i]
  • 1 <= cost[i] <= 106

解法

方法一:字典树 + Floyd 算法 + 记忆化搜索

根据题目描述,我们可以将每个字符串看作一个节点,每对字符串的转换成本看作一条有向边。那么我们先初始化一个 $26 \times 26$ 的二维数组 $g$,其中 $g[i][j]$ 表示字符串 $i$ 转换成字符串 $j$ 的最小成本。初始时 $g[i][j] = \infty$,如果 $i = j$,那么 $g[i][j] = 0$。在这里,我们可以借助字典树存储 originalchanged 中的字符串以及对应的整数编号。

然后,我们使用 Floyd 算法计算出任意两个字符串之间的最小成本。

接下来,我们定义函数 $dfs(i)$ 表示将字符串 $source[i..]$ 转换为字符串 $target[i..]$ 所需的最小成本。那么答案就是 $dfs(0)$

函数 $dfs(i)$ 的计算过程如下:

  • 如果 $i \geq |source|$,说明不需要转换,返回 $0$
  • 否则,如果 $source[i] = target[i]$,那么可以直接跳过,我们直接递归计算 $dfs(i + 1)$。我们也可以在 $[i, |source|)$ 的范围内枚举下标 $j$,如果 $source[i..j]$$target[i..j]$ 都在字典树中,且其对应的整数编号 $x$$y$ 都大于等于 $0$,那么我们可以将 $dfs(j + 1)$$g[x][y]$ 相加,得到一种转换方案的成本,我们取所有方案中的最小值。

综上,我们可以得到:

$$ dfs(i) = \begin{cases} 0, & i \geq |source| \\ dfs(i + 1), & source[i] = target[i] \\ \min_{i \leq j < |source|} { dfs(j + 1) + g[x][y] }, & \text{otherwise} \end{cases} $$

其中 $x$$y$ 分别是 $source[i..j]$$target[i..j]$ 在字典树中对应的整数编号。

为了避免重复计算,我们可以使用记忆化搜索。

时间复杂度 $O(m^3 + n^2 + m \times n)$,空间复杂度 $O(m^2 + m \times n + n)$。其中 $m$$n$ 分别是数组 $original$$source$ 的长度。

class Node:
    __slots__ = ["children", "v"]

    def __init__(self):
        self.children: List[Node | None] = [None] * 26
        self.v = -1


class Solution:
    def minimumCost(
        self,
        source: str,
        target: str,
        original: List[str],
        changed: List[str],
        cost: List[int],
    ) -> int:
        m = len(cost)
        g = [[inf] * (m << 1) for _ in range(m << 1)]
        for i in range(m << 1):
            g[i][i] = 0
        root = Node()
        idx = 0

        def insert(w: str) -> int:
            node = root
            for c in w:
                i = ord(c) - ord("a")
                if node.children[i] is None:
                    node.children[i] = Node()
                node = node.children[i]
            if node.v < 0:
                nonlocal idx
                node.v = idx
                idx += 1
            return node.v

        @cache
        def dfs(i: int) -> int:
            if i >= len(source):
                return 0
            res = dfs(i + 1) if source[i] == target[i] else inf
            p = q = root
            for j in range(i, len(source)):
                p = p.children[ord(source[j]) - ord("a")]
                q = q.children[ord(target[j]) - ord("a")]
                if p is None or q is None:
                    break
                if p.v < 0 or q.v < 0:
                    continue
                res = min(res, dfs(j + 1) + g[p.v][q.v])
            return res

        for x, y, z in zip(original, changed, cost):
            x = insert(x)
            y = insert(y)
            g[x][y] = min(g[x][y], z)
        for k in range(idx):
            for i in range(idx):
                if g[i][k] >= inf:
                    continue
                for j in range(idx):
                    # g[i][j] = min(g[i][j], g[i][k] + g[k][j])
                    if g[i][k] + g[k][j] < g[i][j]:
                        g[i][j] = g[i][k] + g[k][j]

        ans = dfs(0)
        return -1 if ans >= inf else ans
class Node {
    Node[] children = new Node[26];
    int v = -1;
}

class Solution {
    private final long inf = 1L << 60;
    private Node root = new Node();
    private int idx;

    private long[][] g;
    private char[] s;
    private char[] t;
    private Long[] f;

    public long minimumCost(
        String source, String target, String[] original, String[] changed, int[] cost) {
        int m = cost.length;
        g = new long[m << 1][m << 1];
        s = source.toCharArray();
        t = target.toCharArray();
        for (int i = 0; i < g.length; ++i) {
            Arrays.fill(g[i], inf);
            g[i][i] = 0;
        }
        for (int i = 0; i < m; ++i) {
            int x = insert(original[i]);
            int y = insert(changed[i]);
            g[x][y] = Math.min(g[x][y], cost[i]);
        }
        for (int k = 0; k < idx; ++k) {
            for (int i = 0; i < idx; ++i) {
                if (g[i][k] >= inf) {
                    continue;
                }
                for (int j = 0; j < idx; ++j) {
                    g[i][j] = Math.min(g[i][j], g[i][k] + g[k][j]);
                }
            }
        }
        f = new Long[s.length];
        long ans = dfs(0);
        return ans >= inf ? -1 : ans;
    }

    private int insert(String w) {
        Node node = root;
        for (char c : w.toCharArray()) {
            int i = c - 'a';
            if (node.children[i] == null) {
                node.children[i] = new Node();
            }
            node = node.children[i];
        }
        if (node.v < 0) {
            node.v = idx++;
        }
        return node.v;
    }

    private long dfs(int i) {
        if (i >= s.length) {
            return 0;
        }
        if (f[i] != null) {
            return f[i];
        }
        long res = s[i] == t[i] ? dfs(i + 1) : inf;
        Node p = root, q = root;
        for (int j = i; j < s.length; ++j) {
            p = p.children[s[j] - 'a'];
            q = q.children[t[j] - 'a'];
            if (p == null || q == null) {
                break;
            }
            if (p.v < 0 || q.v < 0) {
                continue;
            }
            long t = g[p.v][q.v];
            if (t < inf) {
                res = Math.min(res, t + dfs(j + 1));
            }
        }
        return f[i] = res;
    }
}
class Node {
public:
    Node* children[26];
    int v = -1;
    Node() {
        fill(children, children + 26, nullptr);
    }
};

class Solution {
private:
    const long long inf = 1LL << 60;
    Node* root = new Node();
    int idx;

    vector<vector<long long>> g;
    string s;
    string t;
    vector<long long> f;

public:
    long long minimumCost(string source, string target, vector<string>& original, vector<string>& changed, vector<int>& cost) {
        int m = cost.size();
        g = vector<vector<long long>>(m << 1, vector<long long>(m << 1, inf));
        s = source;
        t = target;

        for (int i = 0; i < g.size(); ++i) {
            g[i][i] = 0;
        }

        for (int i = 0; i < m; ++i) {
            int x = insert(original[i]);
            int y = insert(changed[i]);
            g[x][y] = min(g[x][y], static_cast<long long>(cost[i]));
        }

        for (int k = 0; k < idx; ++k) {
            for (int i = 0; i < idx; ++i) {
                if (g[i][k] >= inf) {
                    continue;
                }
                for (int j = 0; j < idx; ++j) {
                    g[i][j] = min(g[i][j], g[i][k] + g[k][j]);
                }
            }
        }

        f = vector<long long>(s.length(), -1);
        long long ans = dfs(0);
        return ans >= inf ? -1 : ans;
    }

private:
    int insert(const string& w) {
        Node* node = root;
        for (char c : w) {
            int i = c - 'a';
            if (node->children[i] == nullptr) {
                node->children[i] = new Node();
            }
            node = node->children[i];
        }
        if (node->v < 0) {
            node->v = idx++;
        }
        return node->v;
    }

    long long dfs(int i) {
        if (i >= s.length()) {
            return 0;
        }
        if (f[i] != -1) {
            return f[i];
        }
        long long res = (s[i] == t[i]) ? dfs(i + 1) : inf;
        Node* p = root;
        Node* q = root;
        for (int j = i; j < s.length(); ++j) {
            p = p->children[s[j] - 'a'];
            q = q->children[t[j] - 'a'];
            if (p == nullptr || q == nullptr) {
                break;
            }
            if (p->v < 0 || q->v < 0) {
                continue;
            }
            long long temp = g[p->v][q->v];
            if (temp < inf) {
                res = min(res, temp + dfs(j + 1));
            }
        }
        return f[i] = res;
    }
};
type Node struct {
	children [26]*Node
	v        int
}

func newNode() *Node {
	return &Node{v: -1}
}

func minimumCost(source string, target string, original []string, changed []string, cost []int) int64 {
	inf := 1 << 60
	root := newNode()
	idx := 0
	m := len(cost)
	g := make([][]int, m<<1)
	for i := range g {
		g[i] = make([]int, m<<1)
		for j := range g[i] {
			g[i][j] = inf
		}
		g[i][i] = 0
	}
	insert := func(w string) int {
		node := root
		for _, c := range w {
			i := c - 'a'
			if node.children[i] == nil {
				node.children[i] = newNode()
			}
			node = node.children[i]
		}
		if node.v < 0 {
			node.v = idx
			idx++
		}
		return node.v
	}
	for i := range original {
		x := insert(original[i])
		y := insert(changed[i])
		g[x][y] = min(g[x][y], cost[i])
	}
	for k := 0; k < idx; k++ {
		for i := 0; i < idx; i++ {
			if g[i][k] >= inf {
				continue
			}
			for j := 0; j < idx; j++ {
				g[i][j] = min(g[i][j], g[i][k]+g[k][j])
			}
		}
	}
	n := len(source)
	f := make([]int, n)
	for i := range f {
		f[i] = -1
	}
	var dfs func(int) int
	dfs = func(i int) int {
		if i >= n {
			return 0
		}
		if f[i] >= 0 {
			return f[i]
		}
		f[i] = inf
		if source[i] == target[i] {
			f[i] = dfs(i + 1)
		}
		p, q := root, root
		for j := i; j < n; j++ {
			p = p.children[source[j]-'a']
			q = q.children[target[j]-'a']
			if p == nil || q == nil {
				break
			}
			if p.v < 0 || q.v < 0 {
				continue
			}
			f[i] = min(f[i], dfs(j+1)+g[p.v][q.v])
		}
		return f[i]
	}
	ans := dfs(0)
	if ans >= inf {
		ans = -1
	}
	return int64(ans)
}
class Node {
    children: (Node | null)[] = Array(26).fill(null);
    v: number = -1;
}

function minimumCost(
    source: string,
    target: string,
    original: string[],
    changed: string[],
    cost: number[],
): number {
    const m = cost.length;
    const n = source.length;
    const g: number[][] = Array.from({ length: m << 1 }, () => Array(m << 1).fill(Infinity));
    const root: Node = new Node();
    let idx: number = 0;
    const f: number[] = Array(n).fill(-1);
    const insert = (w: string): number => {
        let node: Node = root;
        for (const c of w) {
            const i: number = c.charCodeAt(0) - 'a'.charCodeAt(0);
            if (node.children[i] === null) {
                node.children[i] = new Node();
            }
            node = node.children[i] as Node;
        }
        if (node.v < 0) {
            node.v = idx++;
        }
        return node.v;
    };

    const dfs = (i: number): number => {
        if (i >= n) {
            return 0;
        }
        if (f[i] !== -1) {
            return f[i];
        }
        let res: number = source[i] === target[i] ? dfs(i + 1) : Infinity;
        let p: Node = root;
        let q: Node = root;
        for (let j = i; j < source.length; ++j) {
            p = p.children[source[j].charCodeAt(0) - 'a'.charCodeAt(0)] as Node;
            q = q.children[target[j].charCodeAt(0) - 'a'.charCodeAt(0)] as Node;
            if (p === null || q === null) {
                break;
            }
            if (p.v < 0 || q.v < 0) {
                continue;
            }
            const t: number = g[p.v][q.v];
            res = Math.min(res, t + dfs(j + 1));
        }
        return (f[i] = res);
    };

    for (let i = 0; i < m; ++i) {
        const x: number = insert(original[i]);
        const y: number = insert(changed[i]);
        g[x][y] = Math.min(g[x][y], cost[i]);
    }

    for (let k = 0; k < idx; ++k) {
        for (let i = 0; i < idx; ++i) {
            if (g[i][k] >= Infinity) {
                continue;
            }
            for (let j = 0; j < idx; ++j) {
                g[i][j] = Math.min(g[i][j], g[i][k] + g[k][j]);
            }
        }
    }
    const ans: number = dfs(0);
    return ans >= Infinity ? -1 : ans;
}