Skip to content

Latest commit

 

History

History
406 lines (353 loc) · 12.6 KB

File metadata and controls

406 lines (353 loc) · 12.6 KB

English Version

题目描述

给你一个下标从 0 开始的正整数数组 heights ,其中 heights[i] 表示第 i 栋建筑的高度。

如果一个人在建筑 i ,且存在 i < j 的建筑 j 满足 heights[i] < heights[j] ,那么这个人可以移动到建筑 j 。

给你另外一个数组 queries ,其中 queries[i] = [ai, bi] 。第 i 个查询中,Alice 在建筑 ai ,Bob 在建筑 bi 

请你能返回一个数组 ans ,其中 ans[i] 是第 i 个查询中,Alice 和 Bob 可以相遇的 最左边的建筑 。如果对于查询 i ,Alice Bob 不能相遇,令 ans[i] 为 -1 。

 

示例 1:

输入:heights = [6,4,8,5,2,7], queries = [[0,1],[0,3],[2,4],[3,4],[2,2]]
输出:[2,5,-1,5,2]
解释:第一个查询中,Alice 和 Bob 可以移动到建筑 2 ,因为 heights[0] < heights[2] 且 heights[1] < heights[2] 。
第二个查询中,Alice 和 Bob 可以移动到建筑 5 ,因为 heights[0] < heights[5] 且 heights[3] < heights[5] 。
第三个查询中,Alice 无法与 Bob 相遇,因为 Alice 不能移动到任何其他建筑。
第四个查询中,Alice 和 Bob 可以移动到建筑 5 ,因为 heights[3] < heights[5] 且 heights[4] < heights[5] 。
第五个查询中,Alice 和 Bob 已经在同一栋建筑中。
对于 ans[i] != -1 ,ans[i] 是 Alice 和 Bob 可以相遇的建筑中最左边建筑的下标。
对于 ans[i] == -1 ,不存在 Alice 和 Bob 可以相遇的建筑。

示例 2:

输入:heights = [5,3,8,2,6,1,4,6], queries = [[0,7],[3,5],[5,2],[3,0],[1,6]]
输出:[7,6,-1,4,6]
解释:第一个查询中,Alice 可以直接移动到 Bob 的建筑,因为 heights[0] < heights[7] 。
第二个查询中,Alice 和 Bob 可以移动到建筑 6 ,因为 heights[3] < heights[6] 且 heights[5] < heights[6] 。
第三个查询中,Alice 无法与 Bob 相遇,因为 Bob 不能移动到任何其他建筑。
第四个查询中,Alice 和 Bob 可以移动到建筑 4 ,因为 heights[3] < heights[4] 且 heights[0] < heights[4] 。
第五个查询中,Alice 可以直接移动到 Bob 的建筑,因为 heights[1] < heights[6] 。
对于 ans[i] != -1 ,ans[i] 是 Alice 和 Bob 可以相遇的建筑中最左边建筑的下标。
对于 ans[i] == -1 ,不存在 Alice 和 Bob 可以相遇的建筑。

 

提示:

  • 1 <= heights.length <= 5 * 104
  • 1 <= heights[i] <= 109
  • 1 <= queries.length <= 5 * 104
  • queries[i] = [ai, bi]
  • 0 <= ai, bi <= heights.length - 1

解法

方法一:树状数组

我们不妨记 $queries[i] = [l_i, r_i]$,其中 $l_i \le r_i$。如果 $l_i = r_i$ 或者 $heights[l_i] \lt heights[r_i]$,那么答案就是 $r_i$。否则,我们需要在所有满足 $j \gt r_i$,且 $heights[j] \gt heights[l_i]$$j$ 中找到最小的 $j$

我们可以将 $queries$ 按照 $r_i$ 从大到小排序,用一个指针 $j$ 指向当前遍历到的 $heights$ 的下标。

接下来,我们遍历每个查询 $queries[i] = (l, r)$,对于当前查询,如果 $j \gt r$,那么我们循环将 $heights[j]$ 插入树状数组中。树状数组维护的是后缀高度(离散化后的高度)的下标的最小值。然后,我们判断是否满足 $l = r$ 或者 $heights[l] \lt heights[r]$,如果满足,那么当前查询的答案就是 $r$,否则,我们在树状数组中查询 $heights[l]$ 的下标的最小值,即为当前查询的答案。

时间复杂度 $O((n + m) \times \log n + m \times \log m)$,空间复杂度 $O(n + m)$。其中 $n$$m$ 分别为 $heights$$queries$ 的长度。

相似题目:

class BinaryIndexedTree:
    __slots__ = ["n", "c"]

    def __init__(self, n: int):
        self.n = n
        self.c = [inf] * (n + 1)

    def update(self, x: int, v: int):
        while x <= self.n:
            self.c[x] = min(self.c[x], v)
            x += x & -x

    def query(self, x: int) -> int:
        mi = inf
        while x:
            mi = min(mi, self.c[x])
            x -= x & -x
        return -1 if mi == inf else mi


class Solution:
    def leftmostBuildingQueries(
        self, heights: List[int], queries: List[List[int]]
    ) -> List[int]:
        n, m = len(heights), len(queries)
        for i in range(m):
            queries[i] = [min(queries[i]), max(queries[i])]
        j = n - 1
        s = sorted(set(heights))
        ans = [-1] * m
        tree = BinaryIndexedTree(n)
        for i in sorted(range(m), key=lambda i: -queries[i][1]):
            l, r = queries[i]
            while j > r:
                k = n - bisect_left(s, heights[j]) + 1
                tree.update(k, j)
                j -= 1
            if l == r or heights[l] < heights[r]:
                ans[i] = r
            else:
                k = n - bisect_left(s, heights[l])
                ans[i] = tree.query(k)
        return ans
class BinaryIndexedTree {
    private final int inf = 1 << 30;
    private int n;
    private int[] c;

    public BinaryIndexedTree(int n) {
        this.n = n;
        c = new int[n + 1];
        Arrays.fill(c, inf);
    }

    public void update(int x, int v) {
        while (x <= n) {
            c[x] = Math.min(c[x], v);
            x += x & -x;
        }
    }

    public int query(int x) {
        int mi = inf;
        while (x > 0) {
            mi = Math.min(mi, c[x]);
            x -= x & -x;
        }
        return mi == inf ? -1 : mi;
    }
}

class Solution {
    public int[] leftmostBuildingQueries(int[] heights, int[][] queries) {
        int n = heights.length;
        int m = queries.length;
        for (int i = 0; i < m; ++i) {
            if (queries[i][0] > queries[i][1]) {
                queries[i] = new int[] {queries[i][1], queries[i][0]};
            }
        }
        Integer[] idx = new Integer[m];
        for (int i = 0; i < m; ++i) {
            idx[i] = i;
        }
        Arrays.sort(idx, (i, j) -> queries[j][1] - queries[i][1]);
        int[] s = heights.clone();
        Arrays.sort(s);
        int[] ans = new int[m];
        int j = n - 1;
        BinaryIndexedTree tree = new BinaryIndexedTree(n);
        for (int i : idx) {
            int l = queries[i][0], r = queries[i][1];
            while (j > r) {
                int k = n - Arrays.binarySearch(s, heights[j]) + 1;
                tree.update(k, j);
                --j;
            }
            if (l == r || heights[l] < heights[r]) {
                ans[i] = r;
            } else {
                int k = n - Arrays.binarySearch(s, heights[l]);
                ans[i] = tree.query(k);
            }
        }
        return ans;
    }
}
class BinaryIndexedTree {
private:
    int inf = 1 << 30;
    int n;
    vector<int> c;

public:
    BinaryIndexedTree(int n) {
        this->n = n;
        c.resize(n + 1, inf);
    }

    void update(int x, int v) {
        while (x <= n) {
            c[x] = min(c[x], v);
            x += x & -x;
        }
    }

    int query(int x) {
        int mi = inf;
        while (x > 0) {
            mi = min(mi, c[x]);
            x -= x & -x;
        }
        return mi == inf ? -1 : mi;
    }
};

class Solution {
public:
    vector<int> leftmostBuildingQueries(vector<int>& heights, vector<vector<int>>& queries) {
        int n = heights.size(), m = queries.size();
        for (auto& q : queries) {
            if (q[0] > q[1]) {
                swap(q[0], q[1]);
            }
        }
        vector<int> idx(m);
        iota(idx.begin(), idx.end(), 0);
        sort(idx.begin(), idx.end(), [&](int i, int j) {
            return queries[j][1] < queries[i][1];
        });
        vector<int> s = heights;
        sort(s.begin(), s.end());
        s.erase(unique(s.begin(), s.end()), s.end());
        vector<int> ans(m);
        int j = n - 1;
        BinaryIndexedTree tree(n);
        for (int i : idx) {
            int l = queries[i][0], r = queries[i][1];
            while (j > r) {
                int k = s.end() - lower_bound(s.begin(), s.end(), heights[j]) + 1;
                tree.update(k, j);
                --j;
            }
            if (l == r || heights[l] < heights[r]) {
                ans[i] = r;
            } else {
                int k = s.end() - lower_bound(s.begin(), s.end(), heights[l]);
                ans[i] = tree.query(k);
            }
        }
        return ans;
    }
};
const inf int = 1 << 30

type BinaryIndexedTree struct {
	n int
	c []int
}

func NewBinaryIndexedTree(n int) BinaryIndexedTree {
	c := make([]int, n+1)
	for i := range c {
		c[i] = inf
	}
	return BinaryIndexedTree{n: n, c: c}
}

func (bit *BinaryIndexedTree) update(x, v int) {
	for x <= bit.n {
		bit.c[x] = min(bit.c[x], v)
		x += x & -x
	}
}

func (bit *BinaryIndexedTree) query(x int) int {
	mi := inf
	for x > 0 {
		mi = min(mi, bit.c[x])
		x -= x & -x
	}
	if mi == inf {
		return -1
	}
	return mi
}

func leftmostBuildingQueries(heights []int, queries [][]int) []int {
	n, m := len(heights), len(queries)
	for _, q := range queries {
		if q[0] > q[1] {
			q[0], q[1] = q[1], q[0]
		}
	}
	idx := make([]int, m)
	for i := range idx {
		idx[i] = i
	}
	sort.Slice(idx, func(i, j int) bool { return queries[idx[j]][1] < queries[idx[i]][1] })
	s := make([]int, n)
	copy(s, heights)
	sort.Ints(s)
	ans := make([]int, m)
	tree := NewBinaryIndexedTree(n)
	j := n - 1
	for _, i := range idx {
		l, r := queries[i][0], queries[i][1]
		for ; j > r; j-- {
			k := n - sort.SearchInts(s, heights[j]) + 1
			tree.update(k, j)
		}
		if l == r || heights[l] < heights[r] {
			ans[i] = r
		} else {
			k := n - sort.SearchInts(s, heights[l])
			ans[i] = tree.query(k)
		}
	}
	return ans
}
class BinaryIndexedTree {
    private n: number;
    private c: number[];
    private inf: number = 1 << 30;

    constructor(n: number) {
        this.n = n;
        this.c = Array(n + 1).fill(this.inf);
    }

    update(x: number, v: number): void {
        while (x <= this.n) {
            this.c[x] = Math.min(this.c[x], v);
            x += x & -x;
        }
    }

    query(x: number): number {
        let mi = this.inf;
        while (x > 0) {
            mi = Math.min(mi, this.c[x]);
            x -= x & -x;
        }
        return mi === this.inf ? -1 : mi;
    }
}

function leftmostBuildingQueries(heights: number[], queries: number[][]): number[] {
    const n = heights.length;
    const m = queries.length;
    for (const q of queries) {
        if (q[0] > q[1]) {
            [q[0], q[1]] = [q[1], q[0]];
        }
    }
    const idx: number[] = Array(m)
        .fill(0)
        .map((_, i) => i);
    idx.sort((i, j) => queries[j][1] - queries[i][1]);
    const tree = new BinaryIndexedTree(n);
    const ans: number[] = Array(m).fill(-1);
    const s = [...heights];
    s.sort((a, b) => a - b);
    const search = (x: number) => {
        let [l, r] = [0, n];
        while (l < r) {
            const mid = (l + r) >> 1;
            if (s[mid] >= x) {
                r = mid;
            } else {
                l = mid + 1;
            }
        }
        return l;
    };
    let j = n - 1;
    for (const i of idx) {
        const [l, r] = queries[i];
        while (j > r) {
            const k = n - search(heights[j]) + 1;
            tree.update(k, j);
            --j;
        }
        if (l === r || heights[l] < heights[r]) {
            ans[i] = r;
        } else {
            const k = n - search(heights[l]);
            ans[i] = tree.query(k);
        }
    }
    return ans;
}