Skip to content

Latest commit

 

History

History
149 lines (121 loc) · 4.4 KB

File metadata and controls

149 lines (121 loc) · 4.4 KB

English Version

题目描述

你被给定两个正整数 nlimit

返回 在每个孩子得到不超过 limit 个糖果的情况下,将 n 个糖果分发给 3 个孩子的 总方法数

 

示例 1:

输入:n = 5, limit = 2
输出:3
解释:有 3 种方式将 5 个糖果分发给 3 个孩子,使得每个孩子得到不超过 2 个糖果:(1, 2, 2), (2, 1, 2) 和 (2, 2, 1)。

示例 2:

输入:n = 3, limit = 3
输出:10
解释:有 10 种方式将 3 个糖果分发给 3 个孩子,使得每个孩子得到不超过 3 个糖果:(0, 0, 3), (0, 1, 2), (0, 2, 1), (0, 3, 0), (1, 0, 2), (1, 1, 1), (1, 2, 0), (2, 0, 1), (2, 1, 0) 和 (3, 0, 0)。

 

提示:

  • 1 <= n <= 108
  • 1 <= limit <= 108

解法

方法一:组合数学 + 容斥原理

根据题目描述,我们需要将 $n$ 个糖果分给 $3$ 个小孩,每个小孩分到的糖果数在 $[0, limit]$ 之间。

这实际上等价于把 $n$ 个球放入 $3$ 个盒子中。由于盒子可以为空,我们可以再增加 $3$ 个虚拟球,然后再利用隔板法,即一共有 $n + 3$ 个球,我们在其中 $n + 3 - 1$ 个位置插入 $2$ 个隔板,从而将实际的 $n$ 个球分成 $3$ 组,并且允许盒子为空,因此初始方案数为 $C_{n + 2}^2$

我们需要在这些方案中,排除掉存在盒子分到的小球数超过 $limit$ 的方案。考虑其中有一个盒子分到的小球数超过 $limit$,那么剩下的球(包括虚拟球)最多有 $n + 3 - (limit + 1) = n - limit + 2$ 个,位置数为 $n - limit + 1$,因此方案数为 $C_{n - limit + 1}^2$。由于存在 $3$ 个盒子,因此这样的方案数为 $3 \times C_{n - limit + 1}^2$。这样子算,我们会多排除掉同时存在两个盒子分到的小球数超过 $limit$ 的方案,因此我们需要再加上这样的方案数,即 $3 \times C_{n - 2 \times limit}^2$

时间复杂度 $O(1)$,空间复杂度 $O(1)$

class Solution:
    def distributeCandies(self, n: int, limit: int) -> int:
        if n > 3 * limit:
            return 0
        ans = comb(n + 2, 2)
        if n > limit:
            ans -= 3 * comb(n - limit + 1, 2)
        if n - 2 >= 2 * limit:
            ans += 3 * comb(n - 2 * limit, 2)
        return ans
class Solution {
    public long distributeCandies(int n, int limit) {
        if (n > 3 * limit) {
            return 0;
        }
        long ans = comb2(n + 2);
        if (n > limit) {
            ans -= 3 * comb2(n - limit + 1);
        }
        if (n - 2 >= 2 * limit) {
            ans += 3 * comb2(n - 2 * limit);
        }
        return ans;
    }

    private long comb2(int n) {
        return 1L * n * (n - 1) / 2;
    }
}
class Solution {
public:
    long long distributeCandies(int n, int limit) {
        auto comb2 = [](int n) {
            return 1LL * n * (n - 1) / 2;
        };
        if (n > 3 * limit) {
            return 0;
        }
        long long ans = comb2(n + 2);
        if (n > limit) {
            ans -= 3 * comb2(n - limit + 1);
        }
        if (n - 2 >= 2 * limit) {
            ans += 3 * comb2(n - 2 * limit);
        }
        return ans;
    }
};
func distributeCandies(n int, limit int) int64 {
	comb2 := func(n int) int {
		return n * (n - 1) / 2
	}
	if n > 3*limit {
		return 0
	}
	ans := comb2(n + 2)
	if n > limit {
		ans -= 3 * comb2(n-limit+1)
	}
	if n-2 >= 2*limit {
		ans += 3 * comb2(n-2*limit)
	}
	return int64(ans)
}
function distributeCandies(n: number, limit: number): number {
    const comb2 = (n: number) => (n * (n - 1)) / 2;
    if (n > 3 * limit) {
        return 0;
    }
    let ans = comb2(n + 2);
    if (n > limit) {
        ans -= 3 * comb2(n - limit + 1);
    }
    if (n - 2 >= 2 * limit) {
        ans += 3 * comb2(n - 2 * limit);
    }
    return ans;
}