给你一个下标从 0 开始的整数数组 nums
。如果 nums
中长度为 m
的子数组 s
满足以下条件,我们称它是一个 交替子数组 :
m
大于1
。s1 = s0 + 1
。- 下标从 0 开始的子数组
s
与数组[s0, s1, s0, s1,...,s(m-1) % 2]
一样。也就是说,s1 - s0 = 1
,s2 - s1 = -1
,s3 - s2 = 1
,s4 - s3 = -1
,以此类推,直到s[m - 1] - s[m - 2] = (-1)m
。
请你返回 nums
中所有 交替 子数组中,最长的长度,如果不存在交替子数组,请你返回 -1
。
子数组是一个数组中一段连续 非空 的元素序列。
示例 1:
输入:nums = [2,3,4,3,4] 输出:4 解释:交替子数组有 [3,4] ,[3,4,3] 和 [3,4,3,4] 。最长的子数组为 [3,4,3,4] ,长度为4 。
示例 2:
输入:nums = [4,5,6] 输出:2 解释:[4,5] 和 [5,6] 是仅有的两个交替子数组。它们长度都为 2 。
提示:
2 <= nums.length <= 100
1 <= nums[i] <= 104
我们可以枚举子数组的左端点
时间复杂度
class Solution:
def alternatingSubarray(self, nums: List[int]) -> int:
ans, n = -1, len(nums)
for i in range(n):
k = 1
j = i
while j + 1 < n and nums[j + 1] - nums[j] == k:
j += 1
k *= -1
if j - i + 1 > 1:
ans = max(ans, j - i + 1)
return ans
class Solution {
public int alternatingSubarray(int[] nums) {
int ans = -1, n = nums.length;
for (int i = 0; i < n; ++i) {
int k = 1;
int j = i;
for (; j + 1 < n && nums[j + 1] - nums[j] == k; ++j) {
k *= -1;
}
if (j - i + 1 > 1) {
ans = Math.max(ans, j - i + 1);
}
}
return ans;
}
}
class Solution {
public:
int alternatingSubarray(vector<int>& nums) {
int ans = -1, n = nums.size();
for (int i = 0; i < n; ++i) {
int k = 1;
int j = i;
for (; j + 1 < n && nums[j + 1] - nums[j] == k; ++j) {
k *= -1;
}
if (j - i + 1 > 1) {
ans = max(ans, j - i + 1);
}
}
return ans;
}
};
func alternatingSubarray(nums []int) int {
ans, n := -1, len(nums)
for i := range nums {
k := 1
j := i
for ; j+1 < n && nums[j+1]-nums[j] == k; j++ {
k *= -1
}
if t := j - i + 1; t > 1 && ans < t {
ans = t
}
}
return ans
}
function alternatingSubarray(nums: number[]): number {
let ans = -1;
const n = nums.length;
for (let i = 0; i < n; ++i) {
let k = 1;
let j = i;
for (; j + 1 < n && nums[j + 1] - nums[j] === k; ++j) {
k *= -1;
}
if (j - i + 1 > 1) {
ans = Math.max(ans, j - i + 1);
}
}
return ans;
}