You are given a 0-indexed integer array nums
. In one operation, you can:
- Choose two different indices
i
andj
such that0 <= i, j < nums.length
. - Choose a non-negative integer
k
such that thekth
bit (0-indexed) in the binary representation ofnums[i]
andnums[j]
is1
. - Subtract
2k
fromnums[i]
andnums[j]
.
A subarray is beautiful if it is possible to make all of its elements equal to 0
after applying the above operation any number of times.
Return the number of beautiful subarrays in the array nums
.
A subarray is a contiguous non-empty sequence of elements within an array.
Example 1:
Input: nums = [4,3,1,2,4] Output: 2 Explanation: There are 2 beautiful subarrays in nums: [4,3,1,2,4] and [4,3,1,2,4]. - We can make all elements in the subarray [3,1,2] equal to 0 in the following way: - Choose [3, 1, 2] and k = 1. Subtract 21 from both numbers. The subarray becomes [1, 1, 0]. - Choose [1, 1, 0] and k = 0. Subtract 20 from both numbers. The subarray becomes [0, 0, 0]. - We can make all elements in the subarray [4,3,1,2,4] equal to 0 in the following way: - Choose [4, 3, 1, 2, 4] and k = 2. Subtract 22 from both numbers. The subarray becomes [0, 3, 1, 2, 0]. - Choose [0, 3, 1, 2, 0] and k = 0. Subtract 20 from both numbers. The subarray becomes [0, 2, 0, 2, 0]. - Choose [0, 2, 0, 2, 0] and k = 1. Subtract 21 from both numbers. The subarray becomes [0, 0, 0, 0, 0].
Example 2:
Input: nums = [1,10,4] Output: 0 Explanation: There are no beautiful subarrays in nums.
Constraints:
1 <= nums.length <= 105
0 <= nums[i] <= 106
We observe that a subarray can become an array of all $0$s if and only if the number of $1$s on each binary bit of all elements in the subarray is even.
If there exist indices
Therefore, we can use the prefix XOR method and a hash table
Finally, we return the answer.
The time complexity is
class Solution:
def beautifulSubarrays(self, nums: List[int]) -> int:
cnt = Counter({0: 1})
ans = mask = 0
for x in nums:
mask ^= x
ans += cnt[mask]
cnt[mask] += 1
return ans
class Solution {
public long beautifulSubarrays(int[] nums) {
Map<Integer, Integer> cnt = new HashMap<>();
cnt.put(0, 1);
long ans = 0;
int mask = 0;
for (int x : nums) {
mask ^= x;
ans += cnt.getOrDefault(mask, 0);
cnt.merge(mask, 1, Integer::sum);
}
return ans;
}
}
class Solution {
public:
long long beautifulSubarrays(vector<int>& nums) {
unordered_map<int, int> cnt{{0, 1}};
long long ans = 0;
int mask = 0;
for (int x : nums) {
mask ^= x;
ans += cnt[mask];
++cnt[mask];
}
return ans;
}
};
func beautifulSubarrays(nums []int) (ans int64) {
cnt := map[int]int{0: 1}
mask := 0
for _, x := range nums {
mask ^= x
ans += int64(cnt[mask])
cnt[mask]++
}
return
}
function beautifulSubarrays(nums: number[]): number {
const cnt = new Map();
cnt.set(0, 1);
let ans = 0;
let mask = 0;
for (const x of nums) {
mask ^= x;
ans += cnt.get(mask) || 0;
cnt.set(mask, (cnt.get(mask) || 0) + 1);
}
return ans;
}