You are given an integer array gifts
denoting the number of gifts in various piles. Every second, you do the following:
- Choose the pile with the maximum number of gifts.
- If there is more than one pile with the maximum number of gifts, choose any.
- Leave behind the floor of the square root of the number of gifts in the pile. Take the rest of the gifts.
Return the number of gifts remaining after k
seconds.
Example 1:
Input: gifts = [25,64,9,4,100], k = 4 Output: 29 Explanation: The gifts are taken in the following way: - In the first second, the last pile is chosen and 10 gifts are left behind. - Then the second pile is chosen and 8 gifts are left behind. - After that the first pile is chosen and 5 gifts are left behind. - Finally, the last pile is chosen again and 3 gifts are left behind. The final remaining gifts are [5,8,9,4,3], so the total number of gifts remaining is 29.
Example 2:
Input: gifts = [1,1,1,1], k = 4 Output: 4 Explanation: In this case, regardless which pile you choose, you have to leave behind 1 gift in each pile. That is, you can't take any pile with you. So, the total gifts remaining are 4.
Constraints:
1 <= gifts.length <= 103
1 <= gifts[i] <= 109
1 <= k <= 103
We can store the array
Finally, we add up all the elements in the heap as the answer.
The time complexity is
class Solution:
def pickGifts(self, gifts: List[int], k: int) -> int:
h = [-v for v in gifts]
heapify(h)
for _ in range(k):
heapreplace(h, -int(sqrt(-h[0])))
return -sum(h)
class Solution {
public long pickGifts(int[] gifts, int k) {
PriorityQueue<Integer> pq = new PriorityQueue<>((a, b) -> b - a);
for (int v : gifts) {
pq.offer(v);
}
while (k-- > 0) {
pq.offer((int) Math.sqrt(pq.poll()));
}
long ans = 0;
for (int v : pq) {
ans += v;
}
return ans;
}
}
class Solution {
public:
long long pickGifts(vector<int>& gifts, int k) {
make_heap(gifts.begin(), gifts.end());
while (k--) {
pop_heap(gifts.begin(), gifts.end());
gifts.back() = sqrt(gifts.back());
push_heap(gifts.begin(), gifts.end());
}
return accumulate(gifts.begin(), gifts.end(), 0LL);
}
};
func pickGifts(gifts []int, k int) (ans int64) {
h := &hp{gifts}
heap.Init(h)
for ; k > 0; k-- {
gifts[0] = int(math.Sqrt(float64(gifts[0])))
heap.Fix(h, 0)
}
for _, x := range gifts {
ans += int64(x)
}
return
}
type hp struct{ sort.IntSlice }
func (h hp) Less(i, j int) bool { return h.IntSlice[i] > h.IntSlice[j] }
func (hp) Pop() (_ any) { return }
func (hp) Push(any) {}
function pickGifts(gifts: number[], k: number): number {
const pq = new MaxPriorityQueue();
gifts.forEach(v => pq.enqueue(v));
while (k--) {
let v = pq.dequeue().element;
v = Math.floor(Math.sqrt(v));
pq.enqueue(v);
}
let ans = 0;
while (!pq.isEmpty()) {
ans += pq.dequeue().element;
}
return ans;
}
impl Solution {
pub fn pick_gifts(gifts: Vec<i32>, k: i32) -> i64 {
let mut h = std::collections::BinaryHeap::from(gifts);
let mut ans = 0;
for _ in 0..k {
if let Some(mut max_gift) = h.pop() {
max_gift = (max_gift as f64).sqrt().floor() as i32;
h.push(max_gift);
}
}
for x in h {
ans += x as i64;
}
ans
}
}