给你一个 m x n
的二进制矩阵 grid
,每个格子要么为 0
(空)要么为 1
(被占据)。
给你邮票的尺寸为 stampHeight x stampWidth
。我们想将邮票贴进二进制矩阵中,且满足以下 限制 和 要求 :
- 覆盖所有 空 格子。
- 不覆盖任何 被占据 的格子。
- 我们可以放入任意数目的邮票。
- 邮票可以相互有 重叠 部分。
- 邮票不允许 旋转 。
- 邮票必须完全在矩阵 内 。
如果在满足上述要求的前提下,可以放入邮票,请返回 true
,否则返回 false
。
示例 1:
输入:grid = [[1,0,0,0],[1,0,0,0],[1,0,0,0],[1,0,0,0],[1,0,0,0]], stampHeight = 4, stampWidth = 3 输出:true 解释:我们放入两个有重叠部分的邮票(图中标号为 1 和 2),它们能覆盖所有与空格子。
示例 2:
输入:grid = [[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1]], stampHeight = 2, stampWidth = 2 输出:false 解释:没办法放入邮票覆盖所有的空格子,且邮票不超出网格图以外。
提示:
m == grid.length
n == grid[r].length
1 <= m, n <= 105
1 <= m * n <= 2 * 105
grid[r][c]
要么是0
,要么是1
。1 <= stampHeight, stampWidth <= 105
根据题目描述,每一个空格子都必须被邮票覆盖,而且不能覆盖任何被占据的格子。因此,我们可以遍历二维矩阵,对于每个格子,如果以该格子为左上角的
为了快速判断一个区域内的所有格子是否都是空格子,我们可以使用二维前缀和。我们用
那么以
最后,我们对二维差分数组
时间复杂度
class Solution:
def possibleToStamp(
self, grid: List[List[int]], stampHeight: int, stampWidth: int
) -> bool:
m, n = len(grid), len(grid[0])
s = [[0] * (n + 1) for _ in range(m + 1)]
for i, row in enumerate(grid, 1):
for j, v in enumerate(row, 1):
s[i][j] = s[i - 1][j] + s[i][j - 1] - s[i - 1][j - 1] + v
d = [[0] * (n + 2) for _ in range(m + 2)]
for i in range(1, m - stampHeight + 2):
for j in range(1, n - stampWidth + 2):
x, y = i + stampHeight - 1, j + stampWidth - 1
if s[x][y] - s[x][j - 1] - s[i - 1][y] + s[i - 1][j - 1] == 0:
d[i][j] += 1
d[i][y + 1] -= 1
d[x + 1][j] -= 1
d[x + 1][y + 1] += 1
for i, row in enumerate(grid, 1):
for j, v in enumerate(row, 1):
d[i][j] += d[i - 1][j] + d[i][j - 1] - d[i - 1][j - 1]
if v == 0 and d[i][j] == 0:
return False
return True
class Solution {
public boolean possibleToStamp(int[][] grid, int stampHeight, int stampWidth) {
int m = grid.length, n = grid[0].length;
int[][] s = new int[m + 1][n + 1];
for (int i = 1; i <= m; ++i) {
for (int j = 1; j <= n; ++j) {
s[i][j] = s[i - 1][j] + s[i][j - 1] - s[i - 1][j - 1] + grid[i - 1][j - 1];
}
}
int[][] d = new int[m + 2][n + 2];
for (int i = 1; i + stampHeight - 1 <= m; ++i) {
for (int j = 1; j + stampWidth - 1 <= n; ++j) {
int x = i + stampHeight - 1, y = j + stampWidth - 1;
if (s[x][y] - s[x][j - 1] - s[i - 1][y] + s[i - 1][j - 1] == 0) {
d[i][j]++;
d[i][y + 1]--;
d[x + 1][j]--;
d[x + 1][y + 1]++;
}
}
}
for (int i = 1; i <= m; ++i) {
for (int j = 1; j <= n; ++j) {
d[i][j] += d[i - 1][j] + d[i][j - 1] - d[i - 1][j - 1];
if (grid[i - 1][j - 1] == 0 && d[i][j] == 0) {
return false;
}
}
}
return true;
}
}
class Solution {
public:
bool possibleToStamp(vector<vector<int>>& grid, int stampHeight, int stampWidth) {
int m = grid.size(), n = grid[0].size();
vector<vector<int>> s(m + 1, vector<int>(n + 1));
for (int i = 1; i <= m; ++i) {
for (int j = 1; j <= n; ++j) {
s[i][j] = s[i - 1][j] + s[i][j - 1] - s[i - 1][j - 1] + grid[i - 1][j - 1];
}
}
vector<vector<int>> d(m + 2, vector<int>(n + 2));
for (int i = 1; i + stampHeight - 1 <= m; ++i) {
for (int j = 1; j + stampWidth - 1 <= n; ++j) {
int x = i + stampHeight - 1, y = j + stampWidth - 1;
if (s[x][y] - s[x][j - 1] - s[i - 1][y] + s[i - 1][j - 1] == 0) {
d[i][j]++;
d[i][y + 1]--;
d[x + 1][j]--;
d[x + 1][y + 1]++;
}
}
}
for (int i = 1; i <= m; ++i) {
for (int j = 1; j <= n; ++j) {
d[i][j] += d[i - 1][j] + d[i][j - 1] - d[i - 1][j - 1];
if (grid[i - 1][j - 1] == 0 && d[i][j] == 0) {
return false;
}
}
}
return true;
}
};
func possibleToStamp(grid [][]int, stampHeight int, stampWidth int) bool {
m, n := len(grid), len(grid[0])
s := make([][]int, m+1)
for i := range s {
s[i] = make([]int, n+1)
}
for i := 1; i <= m; i++ {
for j := 1; j <= n; j++ {
s[i][j] = s[i-1][j] + s[i][j-1] - s[i-1][j-1] + grid[i-1][j-1]
}
}
d := make([][]int, m+2)
for i := range d {
d[i] = make([]int, n+2)
}
for i := 1; i+stampHeight-1 <= m; i++ {
for j := 1; j+stampWidth-1 <= n; j++ {
x, y := i+stampHeight-1, j+stampWidth-1
if s[x][y]-s[x][j-1]-s[i-1][y]+s[i-1][j-1] == 0 {
d[i][j]++
d[i][y+1]--
d[x+1][j]--
d[x+1][y+1]++
}
}
}
for i := 1; i <= m; i++ {
for j := 1; j <= n; j++ {
d[i][j] += d[i-1][j] + d[i][j-1] - d[i-1][j-1]
if grid[i-1][j-1] == 0 && d[i][j] == 0 {
return false
}
}
}
return true
}
function possibleToStamp(grid: number[][], stampHeight: number, stampWidth: number): boolean {
const m = grid.length;
const n = grid[0].length;
const s: number[][] = Array.from({ length: m + 1 }, () => Array(n + 1).fill(0));
for (let i = 1; i <= m; ++i) {
for (let j = 1; j <= n; ++j) {
s[i][j] = s[i - 1][j] + s[i][j - 1] - s[i - 1][j - 1] + grid[i - 1][j - 1];
}
}
const d: number[][] = Array.from({ length: m + 2 }, () => Array(n + 2).fill(0));
for (let i = 1; i + stampHeight - 1 <= m; ++i) {
for (let j = 1; j + stampWidth - 1 <= n; ++j) {
const [x, y] = [i + stampHeight - 1, j + stampWidth - 1];
if (s[x][y] - s[x][j - 1] - s[i - 1][y] + s[i - 1][j - 1] === 0) {
d[i][j]++;
d[i][y + 1]--;
d[x + 1][j]--;
d[x + 1][y + 1]++;
}
}
}
for (let i = 1; i <= m; ++i) {
for (let j = 1; j <= n; ++j) {
d[i][j] += d[i - 1][j] + d[i][j - 1] - d[i - 1][j - 1];
if (grid[i - 1][j - 1] === 0 && d[i][j] === 0) {
return false;
}
}
}
return true;
}
impl Solution {
pub fn possible_to_stamp(grid: Vec<Vec<i32>>, stamp_height: i32, stamp_width: i32) -> bool {
let n: usize = grid.len();
let m: usize = grid[0].len();
let mut prefix_vec: Vec<Vec<i32>> = vec![vec![0; m + 1]; n + 1];
// Initialize the prefix vector
for i in 0..n {
for j in 0..m {
prefix_vec[i + 1][j + 1] =
prefix_vec[i][j + 1] + prefix_vec[i + 1][j] - prefix_vec[i][j] + grid[i][j];
}
}
let mut diff_vec: Vec<Vec<i32>> = vec![vec![0; m + 1]; n + 1];
// Construct the difference vector based on prefix sum vector
for i in 0..n {
for j in 0..m {
// If the value of the cell is one, just bypass this
if grid[i][j] == 1 {
continue;
}
// Otherwise, try stick the stamp
let x: usize = i + (stamp_height as usize);
let y: usize = j + (stamp_width as usize);
// Check the bound
if x <= n && y <= m {
// If the region can be sticked (All cells are empty, which means the sum will be zero)
if
prefix_vec[x][y] - prefix_vec[x][j] - prefix_vec[i][y] + prefix_vec[i][j] ==
0
{
// Update the difference vector
diff_vec[i][j] += 1;
diff_vec[x][y] += 1;
diff_vec[x][j] -= 1;
diff_vec[i][y] -= 1;
}
}
}
}
let mut check_vec: Vec<Vec<i32>> = vec![vec![0; m + 1]; n + 1];
// Check the prefix sum of difference vector, to determine if there is any empty cell left
for i in 0..n {
for j in 0..m {
// If the value of the cell is one, just bypass this
if grid[i][j] == 1 {
continue;
}
// Otherwise, check if the region is empty, by calculating the prefix sum of difference vector
check_vec[i + 1][j + 1] =
check_vec[i][j + 1] + check_vec[i + 1][j] - check_vec[i][j] + diff_vec[i][j];
if check_vec[i + 1][j + 1] == 0 {
return false;
}
}
}
true
}
}
/**
* @param {number[][]} grid
* @param {number} stampHeight
* @param {number} stampWidth
* @return {boolean}
*/
var possibleToStamp = function (grid, stampHeight, stampWidth) {
const m = grid.length;
const n = grid[0].length;
const s = Array.from({ length: m + 1 }, () => Array(n + 1).fill(0));
for (let i = 1; i <= m; ++i) {
for (let j = 1; j <= n; ++j) {
s[i][j] = s[i - 1][j] + s[i][j - 1] - s[i - 1][j - 1] + grid[i - 1][j - 1];
}
}
const d = Array.from({ length: m + 2 }, () => Array(n + 2).fill(0));
for (let i = 1; i + stampHeight - 1 <= m; ++i) {
for (let j = 1; j + stampWidth - 1 <= n; ++j) {
const [x, y] = [i + stampHeight - 1, j + stampWidth - 1];
if (s[x][y] - s[x][j - 1] - s[i - 1][y] + s[i - 1][j - 1] === 0) {
d[i][j]++;
d[i][y + 1]--;
d[x + 1][j]--;
d[x + 1][y + 1]++;
}
}
}
for (let i = 1; i <= m; ++i) {
for (let j = 1; j <= n; ++j) {
d[i][j] += d[i - 1][j] + d[i][j - 1] - d[i - 1][j - 1];
if (grid[i - 1][j - 1] === 0 && d[i][j] === 0) {
return false;
}
}
}
return true;
};