Given an integer array nums
(0-indexed) and two integers target
and start
, find an index i
such that nums[i] == target
and abs(i - start)
is minimized. Note that abs(x)
is the absolute value of x
.
Return abs(i - start)
.
It is guaranteed that target
exists in nums
.
Example 1:
Input: nums = [1,2,3,4,5], target = 5, start = 3 Output: 1 Explanation: nums[4] = 5 is the only value equal to target, so the answer is abs(4 - 3) = 1.
Example 2:
Input: nums = [1], target = 1, start = 0 Output: 0 Explanation: nums[0] = 1 is the only value equal to target, so the answer is abs(0 - 0) = 0.
Example 3:
Input: nums = [1,1,1,1,1,1,1,1,1,1], target = 1, start = 0 Output: 0 Explanation: Every value of nums is 1, but nums[0] minimizes abs(i - start), which is abs(0 - 0) = 0.
Constraints:
1 <= nums.length <= 1000
1 <= nums[i] <= 104
0 <= start < nums.length
target
is innums
.
Traverse the array, find all indices equal to
The time complexity is
class Solution:
def getMinDistance(self, nums: List[int], target: int, start: int) -> int:
return min(abs(i - start) for i, x in enumerate(nums) if x == target)
class Solution {
public int getMinDistance(int[] nums, int target, int start) {
int n = nums.length;
int ans = n;
for (int i = 0; i < n; ++i) {
if (nums[i] == target) {
ans = Math.min(ans, Math.abs(i - start));
}
}
return ans;
}
}
class Solution {
public:
int getMinDistance(vector<int>& nums, int target, int start) {
int n = nums.size();
int ans = n;
for (int i = 0; i < n; ++i) {
if (nums[i] == target) {
ans = min(ans, abs(i - start));
}
}
return ans;
}
};
func getMinDistance(nums []int, target int, start int) int {
ans := 1 << 30
for i, x := range nums {
if t := abs(i - start); x == target && t < ans {
ans = t
}
}
return ans
}
func abs(x int) int {
if x < 0 {
return -x
}
return x
}
function getMinDistance(nums: number[], target: number, start: number): number {
let ans = Infinity;
for (let i = 0; i < nums.length; ++i) {
if (nums[i] === target) {
ans = Math.min(ans, Math.abs(i - start));
}
}
return ans;
}
impl Solution {
pub fn get_min_distance(nums: Vec<i32>, target: i32, start: i32) -> i32 {
nums.iter()
.enumerate()
.filter(|&(_, &x)| x == target)
.map(|(i, _)| ((i as i32) - start).abs())
.min()
.unwrap_or_default()
}
}