There is a function signFunc(x)
that returns:
1
ifx
is positive.-1
ifx
is negative.0
ifx
is equal to0
.
You are given an integer array nums
. Let product
be the product of all values in the array nums
.
Return signFunc(product)
.
Example 1:
Input: nums = [-1,-2,-3,-4,3,2,1] Output: 1 Explanation: The product of all values in the array is 144, and signFunc(144) = 1
Example 2:
Input: nums = [1,5,0,2,-3] Output: 0 Explanation: The product of all values in the array is 0, and signFunc(0) = 0
Example 3:
Input: nums = [-1,1,-1,1,-1] Output: -1 Explanation: The product of all values in the array is -1, and signFunc(-1) = -1
Constraints:
1 <= nums.length <= 1000
-100 <= nums[i] <= 100
The problem requires us to return the sign of the product of the array elements, i.e., return
We can define an answer variable ans
, initially set to
Then we traverse each element ans
by
After the traversal is over, we return ans
.
The time complexity is
class Solution:
def arraySign(self, nums: List[int]) -> int:
ans = 1
for v in nums:
if v == 0:
return 0
if v < 0:
ans *= -1
return ans
class Solution {
public int arraySign(int[] nums) {
int ans = 1;
for (int v : nums) {
if (v == 0) {
return 0;
}
if (v < 0) {
ans *= -1;
}
}
return ans;
}
}
class Solution {
public:
int arraySign(vector<int>& nums) {
int ans = 1;
for (int v : nums) {
if (!v) return 0;
if (v < 0) ans *= -1;
}
return ans;
}
};
func arraySign(nums []int) int {
ans := 1
for _, v := range nums {
if v == 0 {
return 0
}
if v < 0 {
ans *= -1
}
}
return ans
}
impl Solution {
pub fn array_sign(nums: Vec<i32>) -> i32 {
let mut ans = 1;
for &num in nums.iter() {
if num == 0 {
return 0;
}
if num < 0 {
ans *= -1;
}
}
ans
}
}
/**
* @param {number[]} nums
* @return {number}
*/
var arraySign = function (nums) {
let ans = 1;
for (const v of nums) {
if (!v) {
return 0;
}
if (v < 0) {
ans *= -1;
}
}
return ans;
};
int arraySign(int* nums, int numsSize) {
int ans = 1;
for (int i = 0; i < numsSize; i++) {
if (nums[i] == 0) {
return 0;
}
if (nums[i] < 0) {
ans *= -1;
}
}
return ans;
}