Skip to content

Latest commit

 

History

History
199 lines (166 loc) · 6.61 KB

File metadata and controls

199 lines (166 loc) · 6.61 KB

English Version

题目描述

给你一个正整数 primeFactors 。你需要构造一个正整数 n ,它满足以下条件:

  • n 质因数(质因数需要考虑重复的情况)的数目 不超过 primeFactors 个。
  • n 好因子的数目最大化。如果 n 的一个因子可以被 n 的每一个质因数整除,我们称这个因子是 好因子 。比方说,如果 n = 12 ,那么它的质因数为 [2,2,3] ,那么 6 和 12 是好因子,但 3 和 4 不是。

请你返回 n 的好因子的数目。由于答案可能会很大,请返回答案对 109 + 7 取余 的结果。

请注意,一个质数的定义是大于 1 ,且不能被分解为两个小于该数的自然数相乘。一个数 n 的质因子是将 n 分解为若干个质因子,且它们的乘积为 n 。

 

示例 1:

输入:primeFactors = 5
输出:6
解释:200 是一个可行的 n 。
它有 5 个质因子:[2,2,2,5,5] ,且有 6 个好因子:[10,20,40,50,100,200] 。
不存在别的 n 有至多 5 个质因子,且同时有更多的好因子。

示例 2:

输入:primeFactors = 8
输出:18

 

提示:

  • 1 <= primeFactors <= 109

解法

方法一:问题转换 + 快速幂

我们可以将 $n$ 进行质因数分解,即 $n = a_1^{k_1} \times a_2^{k_2} \times\cdots \times a_m^{k_m}$,其中 $a_i$ 为质因子,而 $k_i$ 为质因子 $a_i$ 的指数。由于 $n$ 的质因子个数不超过 $primeFactors$ 个,因此 $k_1 + k_2 + \cdots + k_m \leq primeFactors$

而根据题意描述,我们知道 $n$ 的好因子要满足能被所有的质因子整除,也即是说 $n$ 的好因子需要包含 $a_1 \times a_2 \times \cdots \times a_m$ 作为因数。那么好因子的个数 $k= k_1 \times k_2 \times \cdots \times k_m$,即 $k$$k_1, k_2, \cdots, k_m$ 的乘积。要最大化好因子的个数,也即是说我们要将 primeFactors 拆分成 $k_1, k_2, \cdots, k_m$,使得 $k_1 \times k_2 \times \cdots \times k_m$ 最大。因此问题转换为:将整数 primeFactors 拆分成若干个整数的乘积,使得乘积最大。

接下来,我们只需要分情况讨论。

  • 如果 $primeFactors \lt 4$,那么直接返回 primeFactors 即可。
  • 如果 $primeFactors$$3$ 的倍数,那么我们将 primeFactors 拆分成 $3$ 的倍数个 $3$,即 $3^{\frac{primeFactors}{3}}$
  • 如果 $primeFactors$ 除以 $3$$1$,那么我们将 primeFactors 拆分成 $\frac{primeFactors}{3} - 1$$3$,再乘以 $4$,即 $3^{\frac{primeFactors}{3} - 1} \times 4$
  • 如果 $primeFactors$ 除以 $3$$2$,那么我们将 primeFactors 拆分成 $\frac{primeFactors}{3}$$3$,再乘以 $2$,即 $3^{\frac{primeFactors}{3}} \times 2$

以上过程中,我们利用快速幂取模求解。

时间复杂度 $O(\log n)$,空间复杂度 $O(1)$

class Solution:
    def maxNiceDivisors(self, primeFactors: int) -> int:
        mod = 10**9 + 7
        if primeFactors < 4:
            return primeFactors
        if primeFactors % 3 == 0:
            return pow(3, primeFactors // 3, mod) % mod
        if primeFactors % 3 == 1:
            return 4 * pow(3, primeFactors // 3 - 1, mod) % mod
        return 2 * pow(3, primeFactors // 3, mod) % mod
class Solution {
    private final int mod = (int) 1e9 + 7;

    public int maxNiceDivisors(int primeFactors) {
        if (primeFactors < 4) {
            return primeFactors;
        }
        if (primeFactors % 3 == 0) {
            return qpow(3, primeFactors / 3);
        }
        if (primeFactors % 3 == 1) {
            return (int) (4L * qpow(3, primeFactors / 3 - 1) % mod);
        }
        return 2 * qpow(3, primeFactors / 3) % mod;
    }

    private int qpow(long a, long n) {
        long ans = 1;
        for (; n > 0; n >>= 1) {
            if ((n & 1) == 1) {
                ans = ans * a % mod;
            }
            a = a * a % mod;
        }
        return (int) ans;
    }
}
class Solution {
public:
    int maxNiceDivisors(int primeFactors) {
        if (primeFactors < 4) {
            return primeFactors;
        }
        const int mod = 1e9 + 7;
        auto qpow = [&](long long a, long long n) {
            long long ans = 1;
            for (; n; n >>= 1) {
                if (n & 1) {
                    ans = ans * a % mod;
                }
                a = a * a % mod;
            }
            return (int) ans;
        };
        if (primeFactors % 3 == 0) {
            return qpow(3, primeFactors / 3);
        }
        if (primeFactors % 3 == 1) {
            return qpow(3, primeFactors / 3 - 1) * 4L % mod;
        }
        return qpow(3, primeFactors / 3) * 2 % mod;
    }
};
func maxNiceDivisors(primeFactors int) int {
	if primeFactors < 4 {
		return primeFactors
	}
	const mod = 1e9 + 7
	qpow := func(a, n int) int {
		ans := 1
		for ; n > 0; n >>= 1 {
			if n&1 == 1 {
				ans = ans * a % mod
			}
			a = a * a % mod
		}
		return ans
	}
	if primeFactors%3 == 0 {
		return qpow(3, primeFactors/3)
	}
	if primeFactors%3 == 1 {
		return qpow(3, primeFactors/3-1) * 4 % mod
	}
	return qpow(3, primeFactors/3) * 2 % mod
}
/**
 * @param {number} primeFactors
 * @return {number}
 */
var maxNiceDivisors = function (primeFactors) {
    if (primeFactors < 4) {
        return primeFactors;
    }
    const mod = 1e9 + 7;
    const qpow = (a, n) => {
        let ans = 1;
        for (; n; n >>= 1) {
            if (n & 1) {
                ans = Number((BigInt(ans) * BigInt(a)) % BigInt(mod));
            }
            a = Number((BigInt(a) * BigInt(a)) % BigInt(mod));
        }
        return ans;
    };
    const k = Math.floor(primeFactors / 3);
    if (primeFactors % 3 === 0) {
        return qpow(3, k);
    }
    if (primeFactors % 3 === 1) {
        return (4 * qpow(3, k - 1)) % mod;
    }
    return (2 * qpow(3, k)) % mod;
};