You are given an integer array nums
. The absolute sum of a subarray [numsl, numsl+1, ..., numsr-1, numsr]
is abs(numsl + numsl+1 + ... + numsr-1 + numsr)
.
Return the maximum absolute sum of any (possibly empty) subarray of nums
.
Note that abs(x)
is defined as follows:
- If
x
is a negative integer, thenabs(x) = -x
. - If
x
is a non-negative integer, thenabs(x) = x
.
Example 1:
Input: nums = [1,-3,2,3,-4] Output: 5 Explanation: The subarray [2,3] has absolute sum = abs(2+3) = abs(5) = 5.
Example 2:
Input: nums = [2,-5,1,-4,3,-2] Output: 8 Explanation: The subarray [-5,1,-4] has absolute sum = abs(-5+1-4) = abs(-8) = 8.
Constraints:
1 <= nums.length <= 105
-104 <= nums[i] <= 104
We define
The final answer is the maximum value of
Since
Time complexity
class Solution:
def maxAbsoluteSum(self, nums: List[int]) -> int:
f = g = 0
ans = 0
for x in nums:
f = max(f, 0) + x
g = min(g, 0) + x
ans = max(ans, f, abs(g))
return ans
class Solution {
public int maxAbsoluteSum(int[] nums) {
int f = 0, g = 0;
int ans = 0;
for (int x : nums) {
f = Math.max(f, 0) + x;
g = Math.min(g, 0) + x;
ans = Math.max(ans, Math.max(f, Math.abs(g)));
}
return ans;
}
}
class Solution {
public:
int maxAbsoluteSum(vector<int>& nums) {
int f = 0, g = 0;
int ans = 0;
for (int& x : nums) {
f = max(f, 0) + x;
g = min(g, 0) + x;
ans = max({ans, f, abs(g)});
}
return ans;
}
};
func maxAbsoluteSum(nums []int) (ans int) {
var f, g int
for _, x := range nums {
f = max(f, 0) + x
g = min(g, 0) + x
ans = max(ans, max(f, abs(g)))
}
return
}
func abs(x int) int {
if x < 0 {
return -x
}
return x
}
function maxAbsoluteSum(nums: number[]): number {
let f = 0;
let g = 0;
let ans = 0;
for (const x of nums) {
f = Math.max(f, 0) + x;
g = Math.min(g, 0) + x;
ans = Math.max(ans, f, -g);
}
return ans;
}
impl Solution {
pub fn max_absolute_sum(nums: Vec<i32>) -> i32 {
let mut f = 0;
let mut g = 0;
let mut ans = 0;
for x in nums {
f = i32::max(f, 0) + x;
g = i32::min(g, 0) + x;
ans = i32::max(ans, f.max(-g));
}
ans
}
}