A decimal number is called deci-binary if each of its digits is either 0
or 1
without any leading zeros. For example, 101
and 1100
are deci-binary, while 112
and 3001
are not.
Given a string n
that represents a positive decimal integer, return the minimum number of positive deci-binary numbers needed so that they sum up to n
.
Example 1:
Input: n = "32" Output: 3 Explanation: 10 + 11 + 11 = 32
Example 2:
Input: n = "82734" Output: 8
Example 3:
Input: n = "27346209830709182346" Output: 9
Constraints:
1 <= n.length <= 105
n
consists of only digits.n
does not contain any leading zeros and represents a positive integer.
The problem is equivalent to finding the maximum number in the string.
The time complexity is
class Solution:
def minPartitions(self, n: str) -> int:
return int(max(n))
class Solution {
public int minPartitions(String n) {
int ans = 0;
for (int i = 0; i < n.length(); ++i) {
ans = Math.max(ans, n.charAt(i) - '0');
}
return ans;
}
}
class Solution {
public:
int minPartitions(string n) {
int ans = 0;
for (char& c : n) {
ans = max(ans, c - '0');
}
return ans;
}
};
func minPartitions(n string) (ans int) {
for _, c := range n {
if t := int(c - '0'); ans < t {
ans = t
}
}
return
}
function minPartitions(n: string): number {
return Math.max(...n.split('').map(d => parseInt(d)));
}
impl Solution {
pub fn min_partitions(n: String) -> i32 {
let mut ans = 0;
for c in n.as_bytes() {
ans = ans.max((c - b'0') as i32);
}
ans
}
}
int minPartitions(char* n) {
int ans = 0;
for (int i = 0; n[i]; i++) {
int v = n[i] - '0';
if (v > ans) {
ans = v;
}
}
return ans;
}