Skip to content

Latest commit

 

History

History
205 lines (174 loc) · 5.74 KB

File metadata and controls

205 lines (174 loc) · 5.74 KB

English Version

题目描述

在代号为 C-137 的地球上,Rick 发现如果他将两个球放在他新发明的篮子里,它们之间会形成特殊形式的磁力。Rick 有 n 个空的篮子,第 i 个篮子的位置在 position[i] ,Morty 想把 m 个球放到这些篮子里,使得任意两球间 最小磁力 最大。

已知两个球如果分别位于 x 和 y ,那么它们之间的磁力为 |x - y| 。

给你一个整数数组 position 和一个整数 m ,请你返回最大化的最小磁力。

 

示例 1:

输入:position = [1,2,3,4,7], m = 3
输出:3
解释:将 3 个球分别放入位于 1,4 和 7 的三个篮子,两球间的磁力分别为 [3, 3, 6]。最小磁力为 3 。我们没办法让最小磁力大于 3 。

示例 2:

输入:position = [5,4,3,2,1,1000000000], m = 2
输出:999999999
解释:我们使用位于 1 和 1000000000 的篮子时最小磁力最大。

 

提示:

  • n == position.length
  • 2 <= n <= 10^5
  • 1 <= position[i] <= 10^9
  • 所有 position 中的整数 互不相同 。
  • 2 <= m <= position.length

解法

方法一:二分查找

先对 position 进行排序。

然后二分枚举磁力值(相邻两球的最小间距),统计当前最小磁力值下能放下多少个小球,记为 cnt。若 cnt >= m,说明此磁力值符合条件。继续二分查找,最终找到符合条件的最大磁力值。

class Solution:
    def maxDistance(self, position: List[int], m: int) -> int:
        def check(f):
            prev = position[0]
            cnt = 1
            for curr in position[1:]:
                if curr - prev >= f:
                    prev = curr
                    cnt += 1
            return cnt >= m

        position.sort()
        left, right = 1, position[-1]
        while left < right:
            mid = (left + right + 1) >> 1

            if check(mid):
                left = mid
            else:
                right = mid - 1
        return left
class Solution {
    public int maxDistance(int[] position, int m) {
        Arrays.sort(position);
        int left = 1, right = position[position.length - 1];
        while (left < right) {
            int mid = (left + right + 1) >>> 1;
            if (check(position, mid, m)) {
                left = mid;
            } else {
                right = mid - 1;
            }
        }
        return left;
    }

    private boolean check(int[] position, int f, int m) {
        int prev = position[0];
        int cnt = 1;
        for (int i = 1; i < position.length; ++i) {
            int curr = position[i];
            if (curr - prev >= f) {
                prev = curr;
                ++cnt;
            }
        }
        return cnt >= m;
    }
}
class Solution {
public:
    int maxDistance(vector<int>& position, int m) {
        sort(position.begin(), position.end());
        int left = 1, right = position[position.size() - 1];
        while (left < right) {
            int mid = (left + right + 1) >> 1;
            if (check(position, mid, m))
                left = mid;
            else
                right = mid - 1;
        }
        return left;
    }

    bool check(vector<int>& position, int f, int m) {
        int prev = position[0];
        int cnt = 1;
        for (int i = 1; i < position.size(); ++i) {
            int curr = position[i];
            if (curr - prev >= f) {
                prev = curr;
                ++cnt;
            }
        }
        return cnt >= m;
    }
};
func maxDistance(position []int, m int) int {
	sort.Ints(position)
	left, right := 1, position[len(position)-1]
	check := func(f int) bool {
		prev, cnt := position[0], 1
		for _, curr := range position[1:] {
			if curr-prev >= f {
				prev = curr
				cnt++
			}
		}
		return cnt >= m
	}
	for left < right {
		mid := (left + right + 1) >> 1
		if check(mid) {
			left = mid
		} else {
			right = mid - 1
		}
	}
	return left
}
/**
 * @param {number[]} position
 * @param {number} m
 * @return {number}
 */
var maxDistance = function (position, m) {
    position.sort((a, b) => {
        return a - b;
    });
    let left = 1,
        right = position[position.length - 1];
    const check = function (f) {
        let prev = position[0];
        let cnt = 1;
        for (let i = 1; i < position.length; ++i) {
            const curr = position[i];
            if (curr - prev >= f) {
                prev = curr;
                ++cnt;
            }
        }
        return cnt >= m;
    };
    while (left < right) {
        const mid = (left + right + 1) >> 1;
        if (check(mid)) {
            left = mid;
        } else {
            right = mid - 1;
        }
    }
    return left;
};