Given two positive integers n
and k
, the binary string Sn
is formed as follows:
S1 = "0"
Si = Si - 1 + "1" + reverse(invert(Si - 1))
fori > 1
Where +
denotes the concatenation operation, reverse(x)
returns the reversed string x
, and invert(x)
inverts all the bits in x
(0
changes to 1
and 1
changes to 0
).
For example, the first four strings in the above sequence are:
S1 = "0"
S2 = "011"
S3 = "0111001"
S4 = "011100110110001"
Return the kth
bit in Sn
. It is guaranteed that k
is valid for the given n
.
Example 1:
Input: n = 3, k = 1 Output: "0" Explanation: S3 is "0111001". The 1st bit is "0".
Example 2:
Input: n = 4, k = 11 Output: "1" Explanation: S4 is "011100110110001". The 11th bit is "1".
Constraints:
1 <= n <= 20
1 <= k <= 2n - 1
We can observe that for
The calculation process of the function
- If
$k = 1$ , then the answer is$0$ ; - If
$k$ is a power of$2$ , then the answer is$1$ ; - If
$k \times 2 < 2^n - 1$ , it means that$k$ is in the first half, and the answer is$dfs(n - 1, k)$ ; - Otherwise, the answer is
$dfs(n - 1, 2^n - k) \oplus 1$ , where$\oplus$ represents the XOR operation.
The time complexity is
class Solution:
def findKthBit(self, n: int, k: int) -> str:
def dfs(n: int, k: int) -> int:
if k == 1:
return 0
if (k & (k - 1)) == 0:
return 1
m = 1 << n
if k * 2 < m - 1:
return dfs(n - 1, k)
return dfs(n - 1, m - k) ^ 1
return str(dfs(n, k))
class Solution {
public char findKthBit(int n, int k) {
return (char) ('0' + dfs(n, k));
}
private int dfs(int n, int k) {
if (k == 1) {
return 0;
}
if ((k & (k - 1)) == 0) {
return 1;
}
int m = 1 << n;
if (k * 2 < m - 1) {
return dfs(n - 1, k);
}
return dfs(n - 1, m - k) ^ 1;
}
}
class Solution {
public:
char findKthBit(int n, int k) {
function<int(int, int)> dfs = [&](int n, int k) {
if (k == 1) {
return 0;
}
if ((k & (k - 1)) == 0) {
return 1;
}
int m = 1 << n;
if (k * 2 < m - 1) {
return dfs(n - 1, k);
}
return dfs(n - 1, m - k) ^ 1;
};
return '0' + dfs(n, k);
}
};
func findKthBit(n int, k int) byte {
var dfs func(n, k int) int
dfs = func(n, k int) int {
if k == 1 {
return 0
}
if k&(k-1) == 0 {
return 1
}
m := 1 << n
if k*2 < m-1 {
return dfs(n-1, k)
}
return dfs(n-1, m-k) ^ 1
}
return byte('0' + dfs(n, k))
}
function findKthBit(n: number, k: number): string {
const dfs = (n: number, k: number): number => {
if (k === 1) {
return 0;
}
if ((k & (k - 1)) === 0) {
return 1;
}
const m = 1 << n;
if (k * 2 < m - 1) {
return dfs(n - 1, k);
}
return dfs(n - 1, m - k) ^ 1;
};
return dfs(n, k).toString();
}