Given an m x n
matrix of distinct numbers, return all lucky numbers in the matrix in any order.
A lucky number is an element of the matrix such that it is the minimum element in its row and maximum in its column.
Example 1:
Input: matrix = [[3,7,8],[9,11,13],[15,16,17]] Output: [15] Explanation: 15 is the only lucky number since it is the minimum in its row and the maximum in its column.
Example 2:
Input: matrix = [[1,10,4,2],[9,3,8,7],[15,16,17,12]] Output: [12] Explanation: 12 is the only lucky number since it is the minimum in its row and the maximum in its column.
Example 3:
Input: matrix = [[7,8],[1,2]] Output: [7] Explanation: 7 is the only lucky number since it is the minimum in its row and the maximum in its column.
Constraints:
m == mat.length
n == mat[i].length
1 <= n, m <= 50
1 <= matrix[i][j] <= 105
.- All elements in the matrix are distinct.
We can use two arrays
After the traversal is finished, we return the answer array.
The time complexity is
class Solution:
def luckyNumbers(self, matrix: List[List[int]]) -> List[int]:
rows = {min(row) for row in matrix}
cols = {max(col) for col in zip(*matrix)}
return list(rows & cols)
class Solution {
public List<Integer> luckyNumbers(int[][] matrix) {
int m = matrix.length, n = matrix[0].length;
int[] rows = new int[m];
int[] cols = new int[n];
Arrays.fill(rows, 1 << 30);
for (int i = 0; i < m; ++i) {
for (int j = 0; j < n; ++j) {
rows[i] = Math.min(rows[i], matrix[i][j]);
cols[j] = Math.max(cols[j], matrix[i][j]);
}
}
List<Integer> ans = new ArrayList<>();
for (int i = 0; i < m; ++i) {
for (int j = 0; j < n; ++j) {
if (rows[i] == cols[j]) {
ans.add(rows[i]);
}
}
}
return ans;
}
}
class Solution {
public:
vector<int> luckyNumbers(vector<vector<int>>& matrix) {
int m = matrix.size(), n = matrix[0].size();
int rows[m];
int cols[n];
memset(rows, 0x3f, sizeof(rows));
memset(cols, 0, sizeof(cols));
for (int i = 0; i < m; ++i) {
for (int j = 0; j < n; ++j) {
rows[i] = min(rows[i], matrix[i][j]);
cols[j] = max(cols[j], matrix[i][j]);
}
}
vector<int> ans;
for (int i = 0; i < m; ++i) {
for (int j = 0; j < n; ++j) {
if (rows[i] == cols[j]) {
ans.push_back(rows[i]);
}
}
}
return ans;
}
};
func luckyNumbers(matrix [][]int) (ans []int) {
m, n := len(matrix), len(matrix[0])
rows, cols := make([]int, m), make([]int, n)
for i := range rows {
rows[i] = 1 << 30
}
for i, row := range matrix {
for j, x := range row {
rows[i] = min(rows[i], x)
cols[j] = max(cols[j], x)
}
}
for i, row := range matrix {
for j, x := range row {
if rows[i] == cols[j] {
ans = append(ans, x)
}
}
}
return
}
function luckyNumbers(matrix: number[][]): number[] {
const m = matrix.length;
const n = matrix[0].length;
const rows: number[] = new Array(m).fill(1 << 30);
const cols: number[] = new Array(n).fill(0);
for (let i = 0; i < m; ++i) {
for (let j = 0; j < n; j++) {
rows[i] = Math.min(rows[i], matrix[i][j]);
cols[j] = Math.max(cols[j], matrix[i][j]);
}
}
const ans: number[] = [];
for (let i = 0; i < m; ++i) {
for (let j = 0; j < n; j++) {
if (rows[i] === cols[j]) {
ans.push(rows[i]);
}
}
}
return ans;
}
impl Solution {
pub fn lucky_numbers(matrix: Vec<Vec<i32>>) -> Vec<i32> {
let m = matrix.len();
let n = matrix[0].len();
let mut res = vec![];
let mut col = vec![0; n];
for j in 0..n {
for i in 0..m {
col[j] = col[j].max(matrix[i][j]);
}
}
for x in 0..m {
let mut i = 0;
for y in 1..n {
if matrix[x][y] < matrix[x][i] {
i = y;
}
}
if matrix[x][i] == col[i] {
res.push(col[i]);
}
}
res
}
}