Table: Customer
+---------------+---------+ | Column Name | Type | +---------------+---------+ | customer_id | int | | name | varchar | | visited_on | date | | amount | int | +---------------+---------+ In SQL,(customer_id, visited_on) is the primary key for this table. This table contains data about customer transactions in a restaurant. visited_on is the date on which the customer with ID (customer_id) has visited the restaurant. amount is the total paid by a customer.
You are the restaurant owner and you want to analyze a possible expansion (there will be at least one customer every day).
Compute the moving average of how much the customer paid in a seven days window (i.e., current day + 6 days before). average_amount
should be rounded to two decimal places.
Return the result table ordered by visited_on
in ascending order.
The result format is in the following example.
Example 1:
Input: Customer table: +-------------+--------------+--------------+-------------+ | customer_id | name | visited_on | amount | +-------------+--------------+--------------+-------------+ | 1 | Jhon | 2019-01-01 | 100 | | 2 | Daniel | 2019-01-02 | 110 | | 3 | Jade | 2019-01-03 | 120 | | 4 | Khaled | 2019-01-04 | 130 | | 5 | Winston | 2019-01-05 | 110 | | 6 | Elvis | 2019-01-06 | 140 | | 7 | Anna | 2019-01-07 | 150 | | 8 | Maria | 2019-01-08 | 80 | | 9 | Jaze | 2019-01-09 | 110 | | 1 | Jhon | 2019-01-10 | 130 | | 3 | Jade | 2019-01-10 | 150 | +-------------+--------------+--------------+-------------+ Output: +--------------+--------------+----------------+ | visited_on | amount | average_amount | +--------------+--------------+----------------+ | 2019-01-07 | 860 | 122.86 | | 2019-01-08 | 840 | 120 | | 2019-01-09 | 840 | 120 | | 2019-01-10 | 1000 | 142.86 | +--------------+--------------+----------------+ Explanation: 1st moving average from 2019-01-01 to 2019-01-07 has an average_amount of (100 + 110 + 120 + 130 + 110 + 140 + 150)/7 = 122.86 2nd moving average from 2019-01-02 to 2019-01-08 has an average_amount of (110 + 120 + 130 + 110 + 140 + 150 + 80)/7 = 120 3rd moving average from 2019-01-03 to 2019-01-09 has an average_amount of (120 + 130 + 110 + 140 + 150 + 80 + 110)/7 = 120 4th moving average from 2019-01-04 to 2019-01-10 has an average_amount of (130 + 110 + 140 + 150 + 80 + 110 + 130 + 150)/7 = 142.86
# Write your MySQL query statement below
WITH
t AS (
SELECT
visited_on,
SUM(amount) OVER (
ORDER BY visited_on
ROWS 6 PRECEDING
) AS amount,
RANK() OVER (
ORDER BY visited_on
ROWS 6 PRECEDING
) AS rk
FROM
(
SELECT visited_on, SUM(amount) AS amount
FROM Customer
GROUP BY visited_on
) AS tt
)
SELECT visited_on, amount, ROUND(amount / 7, 2) AS average_amount
FROM t
WHERE rk > 6;
# Write your MySQL query statement below
SELECT
a.visited_on,
SUM(b.amount) AS amount,
ROUND(SUM(b.amount) / 7, 2) AS average_amount
FROM
(SELECT DISTINCT visited_on FROM customer) AS a
JOIN customer AS b ON DATEDIFF(a.visited_on, b.visited_on) BETWEEN 0 AND 6
WHERE a.visited_on >= (SELECT MIN(visited_on) FROM customer) + 6
GROUP BY 1
ORDER BY 1;