给你一个整数数组 nums
和一个正整数 threshold
,你需要选择一个正整数作为除数,然后将数组里每个数都除以它,并对除法结果求和。
请你找出能够使上述结果小于等于阈值 threshold
的除数中 最小 的那个。
每个数除以除数后都向上取整,比方说 7/3 = 3 , 10/2 = 5 。
题目保证一定有解。
示例 1:
输入:nums = [1,2,5,9], threshold = 6 输出:5 解释:如果除数为 1 ,我们可以得到和为 17 (1+2+5+9)。 如果除数为 4 ,我们可以得到和为 7 (1+1+2+3) 。如果除数为 5 ,和为 5 (1+1+1+2)。
示例 2:
输入:nums = [2,3,5,7,11], threshold = 11 输出:3
示例 3:
输入:nums = [19], threshold = 5 输出:4
提示:
1 <= nums.length <= 5 * 10^4
1 <= nums[i] <= 10^6
nums.length <= threshold <= 10^6
我们注意到,对于一个数字
我们定义二分查找的左边界
最后返回
时间复杂度
class Solution:
def smallestDivisor(self, nums: List[int], threshold: int) -> int:
l, r = 1, max(nums)
while l < r:
mid = (l + r) >> 1
if sum((x + mid - 1) // mid for x in nums) <= threshold:
r = mid
else:
l = mid + 1
return l
class Solution {
public int smallestDivisor(int[] nums, int threshold) {
int l = 1, r = 1000000;
while (l < r) {
int mid = (l + r) >> 1;
int s = 0;
for (int x : nums) {
s += (x + mid - 1) / mid;
}
if (s <= threshold) {
r = mid;
} else {
l = mid + 1;
}
}
return l;
}
}
class Solution {
public:
int smallestDivisor(vector<int>& nums, int threshold) {
int l = 1;
int r = *max_element(nums.begin(), nums.end());
while (l < r) {
int mid = (l + r) >> 1;
int s = 0;
for (int x : nums) {
s += (x + mid - 1) / mid;
}
if (s <= threshold) {
r = mid;
} else {
l = mid + 1;
}
}
return l;
}
};
func smallestDivisor(nums []int, threshold int) int {
return sort.Search(1000000, func(v int) bool {
v++
s := 0
for _, x := range nums {
s += (x + v - 1) / v
}
return s <= threshold
}) + 1
}
function smallestDivisor(nums: number[], threshold: number): number {
let l = 1;
let r = Math.max(...nums);
while (l < r) {
const mid = (l + r) >> 1;
let s = 0;
for (const x of nums) {
s += Math.ceil(x / mid);
}
if (s <= threshold) {
r = mid;
} else {
l = mid + 1;
}
}
return l;
}
/**
* @param {number[]} nums
* @param {number} threshold
* @return {number}
*/
var smallestDivisor = function (nums, threshold) {
let l = 1;
let r = Math.max(...nums);
while (l < r) {
const mid = (l + r) >> 1;
let s = 0;
for (const x of nums) {
s += Math.ceil(x / mid);
}
if (s <= threshold) {
r = mid;
} else {
l = mid + 1;
}
}
return l;
};
public class Solution {
public int SmallestDivisor(int[] nums, int threshold) {
int l = 1;
int r = nums.Max();
while (l < r) {
int mid = (l + r) >> 1;
int s = 0;
foreach (int x in nums) {
s += (x + mid - 1) / mid;
}
if (s <= threshold) {
r = mid;
} else {
l = mid + 1;
}
}
return l;
}
}
class Solution:
def smallestDivisor(self, nums: List[int], threshold: int) -> int:
def f(v: int) -> bool:
v += 1
return sum((x + v - 1) // v for x in nums) <= threshold
return bisect_left(range(max(nums)), True, key=f) + 1