Skip to content

Latest commit

 

History

History
79 lines (63 loc) · 2.7 KB

File metadata and controls

79 lines (63 loc) · 2.7 KB

中文文档

Description

Table: Activity

+---------------+---------+
| Column Name   | Type    |
+---------------+---------+
| user_id       | int     |
| session_id    | int     |
| activity_date | date    |
| activity_type | enum    |
+---------------+---------+
This table may have duplicate rows.
The activity_type column is an ENUM (category) of type ('open_session', 'end_session', 'scroll_down', 'send_message').
The table shows the user activities for a social media website. 
Note that each session belongs to exactly one user.

 

Write a solution to find the daily active user count for a period of 30 days ending 2019-07-27 inclusively. A user was active on someday if they made at least one activity on that day.

Return the result table in any order.

The result format is in the following example.

 

Example 1:

Input: 
Activity table:
+---------+------------+---------------+---------------+
| user_id | session_id | activity_date | activity_type |
+---------+------------+---------------+---------------+
| 1       | 1          | 2019-07-20    | open_session  |
| 1       | 1          | 2019-07-20    | scroll_down   |
| 1       | 1          | 2019-07-20    | end_session   |
| 2       | 4          | 2019-07-20    | open_session  |
| 2       | 4          | 2019-07-21    | send_message  |
| 2       | 4          | 2019-07-21    | end_session   |
| 3       | 2          | 2019-07-21    | open_session  |
| 3       | 2          | 2019-07-21    | send_message  |
| 3       | 2          | 2019-07-21    | end_session   |
| 4       | 3          | 2019-06-25    | open_session  |
| 4       | 3          | 2019-06-25    | end_session   |
+---------+------------+---------------+---------------+
Output: 
+------------+--------------+ 
| day        | active_users |
+------------+--------------+ 
| 2019-07-20 | 2            |
| 2019-07-21 | 2            |
+------------+--------------+ 
Explanation: Note that we do not care about days with zero active users.

Solutions

Solution 1

# Write your MySQL query statement below
SELECT activity_date AS day, COUNT(DISTINCT user_id) AS active_users
FROM Activity
WHERE activity_date <= '2019-07-27' AND DATEDIFF('2019-07-27', activity_date) < 30
GROUP BY 1;