Given an array of positive integers arr
(not necessarily distinct), return the lexicographically largest permutation that is smaller than arr
, that can be made with exactly one swap. If it cannot be done, then return the same array.
Note that a swap exchanges the positions of two numbers arr[i]
and arr[j]
Example 1:
Input: arr = [3,2,1] Output: [3,1,2] Explanation: Swapping 2 and 1.
Example 2:
Input: arr = [1,1,5] Output: [1,1,5] Explanation: This is already the smallest permutation.
Example 3:
Input: arr = [1,9,4,6,7] Output: [1,7,4,6,9] Explanation: Swapping 9 and 7.
Constraints:
1 <= arr.length <= 104
1 <= arr[i] <= 104
class Solution:
def prevPermOpt1(self, arr: List[int]) -> List[int]:
n = len(arr)
for i in range(n - 1, 0, -1):
if arr[i - 1] > arr[i]:
for j in range(n - 1, i - 1, -1):
if arr[j] < arr[i - 1] and arr[j] != arr[j - 1]:
arr[i - 1], arr[j] = arr[j], arr[i - 1]
return arr
return arr
class Solution {
public int[] prevPermOpt1(int[] arr) {
int n = arr.length;
for (int i = n - 1; i > 0; --i) {
if (arr[i - 1] > arr[i]) {
for (int j = n - 1; j > i - 1; --j) {
if (arr[j] < arr[i - 1] && arr[j] != arr[j - 1]) {
int t = arr[i - 1];
arr[i - 1] = arr[j];
arr[j] = t;
return arr;
}
}
}
}
return arr;
}
}
class Solution {
public:
vector<int> prevPermOpt1(vector<int>& arr) {
int n = arr.size();
for (int i = n - 1; i > 0; --i) {
if (arr[i - 1] > arr[i]) {
for (int j = n - 1; j > i - 1; --j) {
if (arr[j] < arr[i - 1] && arr[j] != arr[j - 1]) {
swap(arr[i - 1], arr[j]);
return arr;
}
}
}
}
return arr;
}
};
func prevPermOpt1(arr []int) []int {
n := len(arr)
for i := n - 1; i > 0; i-- {
if arr[i-1] > arr[i] {
for j := n - 1; j > i-1; j-- {
if arr[j] < arr[i-1] && arr[j] != arr[j-1] {
arr[i-1], arr[j] = arr[j], arr[i-1]
return arr
}
}
}
}
return arr
}
function prevPermOpt1(arr: number[]): number[] {
const n = arr.length;
for (let i = n - 1; i > 0; --i) {
if (arr[i - 1] > arr[i]) {
for (let j = n - 1; j > i - 1; --j) {
if (arr[j] < arr[i - 1] && arr[j] !== arr[j - 1]) {
const t = arr[i - 1];
arr[i - 1] = arr[j];
arr[j] = t;
return arr;
}
}
}
}
return arr;
}