Skip to content

Latest commit

 

History

History
235 lines (198 loc) · 7.77 KB

File metadata and controls

235 lines (198 loc) · 7.77 KB

English Version

题目描述

在一个 106 x 106 的网格中,每个网格上方格的坐标为 (x, y)

现在从源方格 source = [sx, sy] 开始出发,意图赶往目标方格 target = [tx, ty] 。数组 blocked 是封锁的方格列表,其中每个 blocked[i] = [xi, yi] 表示坐标为 (xi, yi) 的方格是禁止通行的。

每次移动,都可以走到网格中在四个方向上相邻的方格,只要该方格 在给出的封锁列表 blocked 上。同时,不允许走出网格。

只有在可以通过一系列的移动从源方格 source 到达目标方格 target 时才返回 true。否则,返回 false

 

示例 1:

输入:blocked = [[0,1],[1,0]], source = [0,0], target = [0,2]
输出:false
解释:
从源方格无法到达目标方格,因为我们无法在网格中移动。
无法向北或者向东移动是因为方格禁止通行。
无法向南或者向西移动是因为不能走出网格。

示例 2:

输入:blocked = [], source = [0,0], target = [999999,999999]
输出:true
解释:
因为没有方格被封锁,所以一定可以到达目标方格。

 

提示:

  • 0 <= blocked.length <= 200
  • blocked[i].length == 2
  • 0 <= xi, yi < 106
  • source.length == target.length == 2
  • 0 <= sx, sy, tx, ty < 106
  • source != target
  • 题目数据保证 sourcetarget 不在封锁列表内

解法

方法一

class Solution:
    def isEscapePossible(
        self, blocked: List[List[int]], source: List[int], target: List[int]
    ) -> bool:
        def dfs(source, target, seen):
            x, y = source
            if (
                not (0 <= x < 10**6 and 0 <= y < 10**6)
                or (x, y) in blocked
                or (x, y) in seen
            ):
                return False
            seen.add((x, y))
            if len(seen) > 20000 or source == target:
                return True
            for a, b in [[0, -1], [0, 1], [1, 0], [-1, 0]]:
                next = [x + a, y + b]
                if dfs(next, target, seen):
                    return True
            return False

        blocked = set((x, y) for x, y in blocked)
        return dfs(source, target, set()) and dfs(target, source, set())
class Solution {
    private int[][] dirs = new int[][] {{1, 0}, {-1, 0}, {0, 1}, {0, -1}};
    private static final int N = (int) 1e6;
    private Set<Integer> blocked;

    public boolean isEscapePossible(int[][] blocked, int[] source, int[] target) {
        this.blocked = new HashSet<>();
        for (int[] b : blocked) {
            this.blocked.add(b[0] * N + b[1]);
        }
        return dfs(source, target, new HashSet<>()) && dfs(target, source, new HashSet<>());
    }

    private boolean dfs(int[] source, int[] target, Set<Integer> seen) {
        int sx = source[0], sy = source[1];
        int tx = target[0], ty = target[1];
        if (sx < 0 || sx >= N || sy < 0 || sy >= N || tx < 0 || tx >= N || ty < 0 || ty >= N
            || blocked.contains(sx * N + sy) || seen.contains(sx * N + sy)) {
            return false;
        }
        seen.add(sx * N + sy);
        if (seen.size() > 20000 || (sx == target[0] && sy == target[1])) {
            return true;
        }
        for (int[] dir : dirs) {
            if (dfs(new int[] {sx + dir[0], sy + dir[1]}, target, seen)) {
                return true;
            }
        }
        return false;
    }
}
typedef unsigned long long ULL;

class Solution {
public:
    vector<vector<int>> dirs = {{0, 1}, {0, -1}, {1, 0}, {-1, 0}};
    unordered_set<ULL> blocked;
    int N = 1e6;

    bool isEscapePossible(vector<vector<int>>& blocked, vector<int>& source, vector<int>& target) {
        this->blocked.clear();
        for (auto& b : blocked) this->blocked.insert((ULL) b[0] * N + b[1]);
        unordered_set<ULL> s1;
        unordered_set<ULL> s2;
        return dfs(source, target, s1) && dfs(target, source, s2);
    }

    bool dfs(vector<int>& source, vector<int>& target, unordered_set<ULL>& seen) {
        int sx = source[0], sy = source[1];
        int tx = target[0], ty = target[1];
        if (sx < 0 || sx >= N || sy < 0 || sy >= N || tx < 0 || tx >= N || ty < 0 || ty >= N || blocked.count((ULL) sx * N + sy) || seen.count((ULL) sx * N + sy)) return 0;
        seen.insert((ULL) sx * N + sy);
        if (seen.size() > 20000 || (sx == target[0] && sy == target[1])) return 1;
        for (auto& dir : dirs) {
            vector<int> next = {sx + dir[0], sy + dir[1]};
            if (dfs(next, target, seen)) return 1;
        }
        return 0;
    }
};
func isEscapePossible(blocked [][]int, source []int, target []int) bool {
	const N = 1e6
	dirs := [4][2]int{{0, -1}, {0, 1}, {1, 0}, {-1, 0}}
	block := make(map[int]bool)
	for _, b := range blocked {
		block[b[0]*N+b[1]] = true
	}
	var dfs func(source, target []int, seen map[int]bool) bool
	dfs = func(source, target []int, seen map[int]bool) bool {
		sx, sy := source[0], source[1]
		tx, ty := target[0], target[1]
		if sx < 0 || sx >= N || sy < 0 || sy >= N || tx < 0 || tx >= N || ty < 0 || ty >= N || block[sx*N+sy] || seen[sx*N+sy] {
			return false
		}
		seen[sx*N+sy] = true
		if len(seen) > 20000 || (sx == target[0] && sy == target[1]) {
			return true
		}
		for _, dir := range dirs {
			next := []int{sx + dir[0], sy + dir[1]}
			if dfs(next, target, seen) {
				return true
			}
		}
		return false
	}
	s1, s2 := make(map[int]bool), make(map[int]bool)
	return dfs(source, target, s1) && dfs(target, source, s2)
}
use std::collections::{ HashSet, VecDeque };

const BOUNDARY: i32 = 1_000_000;
const MAX: usize = 20000;

impl Solution {
    pub fn is_escape_possible(blocked: Vec<Vec<i32>>, source: Vec<i32>, target: Vec<i32>) -> bool {
        let mut block = HashSet::with_capacity(blocked.len());
        for b in blocked.iter() {
            block.insert((b[0], b[1]));
        }
        bfs(&block, &source, &target) && bfs(&block, &target, &source)
    }
}

fn bfs(block: &HashSet<(i32, i32)>, source: &Vec<i32>, target: &Vec<i32>) -> bool {
    let dir = vec![(-1, 0), (1, 0), (0, -1), (0, 1)];

    let mut queue = VecDeque::new();
    let mut vis = HashSet::new();
    queue.push_back((source[0], source[1]));
    vis.insert((source[0], source[1]));

    while !queue.is_empty() && vis.len() < MAX {
        let (x, y) = queue.pop_front().unwrap();
        if x == target[0] && y == target[1] {
            return true;
        }
        for (dx, dy) in dir.iter() {
            let (nx, ny) = (x + dx, y + dy);
            if
                nx < 0 ||
                nx >= BOUNDARY ||
                ny < 0 ||
                ny >= BOUNDARY ||
                vis.contains(&(nx, ny)) ||
                block.contains(&(nx, ny))
            {
                continue;
            }
            queue.push_back((nx, ny));
            vis.insert((nx, ny));
        }
    }

    vis.len() >= MAX
}